On the differential realization of a second-order bilinear system in a Hilbert space
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the necessary and sufficient conditions for the existence of a nonlinear differential realization of a continuous infinite-dimensional behaviorist system in the class of nonstationary second-order bilinear ordinary differential (in particular, hyperbolic) equations in a separable Hilbert space. The obtained conditions rely upon the tensor products of Hilbert spaces. In passing, we analytically justify some topological-metrical continuity conditions for the projectivization of the Rayleigh–Ritz operator with the calculation of the fundamental group of its image.
Keywords: inverse problem of nonlinear system analysis, bilinear differential realization.
@article{SJIM_2019_22_2_a2,
     author = {A. V. Lakeyev and Yu. E. Linke and V. A. Rusanov},
     title = {On the differential realization of a second-order bilinear system in a {Hilbert} space},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a2/}
}
TY  - JOUR
AU  - A. V. Lakeyev
AU  - Yu. E. Linke
AU  - V. A. Rusanov
TI  - On the differential realization of a second-order bilinear system in a Hilbert space
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 27
EP  - 36
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a2/
LA  - ru
ID  - SJIM_2019_22_2_a2
ER  - 
%0 Journal Article
%A A. V. Lakeyev
%A Yu. E. Linke
%A V. A. Rusanov
%T On the differential realization of a second-order bilinear system in a Hilbert space
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 27-36
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a2/
%G ru
%F SJIM_2019_22_2_a2
A. V. Lakeyev; Yu. E. Linke; V. A. Rusanov. On the differential realization of a second-order bilinear system in a Hilbert space. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 27-36. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a2/

[1] Willems J. C., “System theoretic models for the analysis of physical systems”, Ric. Aut., 1979, no. 10, 71–106 | MR | Zbl

[2] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971

[3] Voronov V. A., Lakeev A. V., Linke Yu. E., Rusanov V. A., “Otsenka tochnosti v protsesse yustirovki matritsy identifikatsii”, Problemy upravleniya i informatiki, 2015, no. 4, 16–26

[4] Daneev A. V., Rusanov V. A., Rusanov M. V., “Ot realizatsii Kalmana–Mesarovicha k lineinoi modeli normalno-giperbolicheskogo tipa”, Kibernetika i sistemnyi analiz, 2005, no. 6, 137–157

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984

[7] Rusanov V. A., Daneev A. V., Lakeev A. V., Linke Yu. E., “On the differential realization theory of nonlinear dynamic processes in Hilbert space”, Far East J. Math. Sci., 97:4 (2015), 495–532 | MR | Zbl

[8] Rusanov V. A., Daneev A. V., Linke Yu. E., “K geometricheskim osnovam differentsialnoi realizatsii dinamicheskikh protsessov v gilbertovom prostranstve”, Kibernetika i sistemnyi analiz, 53:4 (2017), 71–83 | Zbl

[9] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauch. izd-vo, Novosibirsk, 2009

[10] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii”, Sib. zhurn. industr. matematiki, 14:1 (2011), 27–39 ; 2, 28–33 | Zbl

[11] Rusanov V. A., Daneev A. V., Lakeyev A. V., Linke Yu. E., “On solvability of the identification-inverse problem for operator-functions of a nonlinear regulator of a nonstationary hyperbolic system”, Adv. Differ. Equ. Control Process, 16:2 (2015), 71–84 | DOI | MR | Zbl

[12] Lakeev A. V., Linke Yu. E., Rusanov V. A., “K realizatsii polilineinogo regulyatora differentsialnoi sistemy vtorogo poryadka v gilbertovom prostranstve”, Differents. uravneniya, 53:8 (2017), 1098–1109 | DOI | Zbl

[13] Prasolov V. V., Elementy kombinatornoi i differentsialnoi topologii, izd. MTsNMO, M., 2014

[14] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978

[15] Rusanov V. A., Lakeev A. V., Linke Yu. E., “Suschestvovanie differentsialnoi realizatsii dinamicheskoi sistemy v banakhovom prostranstve v konstruktsiyakh rasshirenii do $M_p$-operatorov”, Differents. uravneniya, 49:3 (2013), 358–370 | Zbl

[16] Dyachenko M. I., Ulyanov P. L., Mera i integral, Faktorial, M., 1998

[17] Lakeev A. V., Linke Yu. E., Rusanov V. A., “Ob odnom kriterii nepreryvnosti operatora Releya–Rittsa”, Vest. Buryat. gos. un-ta. Matematika i informatika, 2018, no. 3, 3–13

[18] Engelking R., Obschaya topologiya, Mir, M., 1986

[19] Daneev A. V., Rusanov V. A., Rusanov M. V., Sizykh V. N., “K aposteriornomu modelirovaniyu nestatsionarnykh giperbolicheskikh sistem”, Izv. Samar. nauch. tsentra RAN, 20:1 (2018), 106–113

[20] Rusanov V. A., Daneev A. V., Linke Yu. E., Sizykh V. N., Voronov V. A., “System-theoretical foundation for identification of dynamic systems. I”, Far East J. Math. Sci., 106:1 (2018), 1–42

[21] Kaiser E., Kutz J. N., Brunton S. L., Sparse identification of nonlinear dynamics for model predictive control in the low-data limit, 30 Sep 2018, arXiv: 1711.05501v2 [math.OC] | MR