Some properties of elastic dynamics of a medium with preliminary large irreversible deformations
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 90-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonstationary dynamics of a medium without additional accumulation of plastic strains over preexisting ones is considered in the framework of a model of large elastoplastic deformations. For such a case, it is shown that the velocities and types of arising elastic shock waves completely repeat the wave pattern for a nonlinearly-elastic medium, whereas the compatibility conditions for discontinuities do not depend on the plastic strains. Some general formulas for calculating the rotation and redistribution of plastic deformations are obtained. The results are illustrated by relatively simple example with the plane one-dimensional shock waves. For an isotropic nonlinear relation between the stresses and elastic strains, it is shown that the plane elastic shock waves are divided into quasi-longitudinal, quasi-transverse, and rotational ones. It is also shown that, in the general case, some jump rotation of plastic deformations can occur on each of the elastic waves.
Keywords: elastoplastic medium, finite deformations, elastic shock waves, redistribution of plastic deformations, rotational tensor.
@article{SJIM_2019_22_1_a8,
     author = {V. E. Ragozina and O. V. Dudko},
     title = {Some properties of elastic dynamics of a medium with preliminary large irreversible deformations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {90--103},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a8/}
}
TY  - JOUR
AU  - V. E. Ragozina
AU  - O. V. Dudko
TI  - Some properties of elastic dynamics of a medium with preliminary large irreversible deformations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 90
EP  - 103
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a8/
LA  - ru
ID  - SJIM_2019_22_1_a8
ER  - 
%0 Journal Article
%A V. E. Ragozina
%A O. V. Dudko
%T Some properties of elastic dynamics of a medium with preliminary large irreversible deformations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 90-103
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a8/
%G ru
%F SJIM_2019_22_1_a8
V. E. Ragozina; O. V. Dudko. Some properties of elastic dynamics of a medium with preliminary large irreversible deformations. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 90-103. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a8/

[1] Levitas V. I., Bolshie uprugoplasticheskie deformatsii materialov pri vysokom davlenii, Naukova dumka, Kiev, 1987

[2] Bykovtsev G. I., Shitikov A. V., “Konechnye deformatsii uprugoplasticheskikh sred”, Dokl. AN SSSR, 311:1 (1990), 59–62 | Zbl

[3] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, Izd-vo SO RAN, Novosibirsk, 2000

[4] Rogovoi A. A., “Opredelyayuschie sootnosheniya dlya konechnykh uprugo-neuprugikh deformatsii”, Prikl. mekhanika i tekhn. fizika, 46:5 (2005), 138–149 | Zbl

[5] Xiao H., Bruhns O. T., Meyers A., “Elastoplasticity beyond small deformations”, Acta Mechanica, 182 (2006), 31–111 | DOI | Zbl

[6] Korobeynikov S. N., “Objective tensor rates and applications in formulation of hyperelastic relations”, J. Elasticity, 93:2 (2008), 105–140 | DOI | MR | Zbl

[7] Dimitrienko Yu. I., Nelineinaya mekhanika sploshnoi sredy, Fizmatlit, M., 2009

[8] Shutov A. V., Ihlemann J., “Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change”, Int. J. Plasticity, 63 (2014), 183–197 | DOI

[9] Burenin A. A., Kovtanyuk L. V., Uprugie effekty pri intensivnom neobratimom deformirovanii, Izd-vo DVGTU, Vladivostok, 2011

[10] Burenin A. A., Dudko O. V., Mantsybora A. A., “O rasprostranenii obratimykh deformatsii po srede s nakoplennymi neobratimymi deformatsiyami”, Prikl. mekhanika i tekhn. fizika, 43:5 (2002), 162–170 | Zbl

[11] Mantsybora A. A., Rusanov M. M., “Avtomodelnaya zadacha o dinamike razgruzki uprugoplasticheskogo poluprostranstva”, Sib. zhurn. industr. matematiki, 16:2 (2013), 122–129 | Zbl

[12] Petrov V. V., Nelineinaya inkrementalnaya stroitelnaya mekhanika, Infra-Inzheneriya, M., 2014

[13] Levin V. A., Vershinin A. V., Nelineinaya vychislitelnaya mekhanika prochnosti, v. 2, Chislennye metody. Parallelnye vychisleniya na EVM, Fizmatlit, M., 2015

[14] Dimitrienko Yu. I., Tensor Analysis and Nonlinear Tensor Functions, Kluwer Acad. Publ., 2002 | MR | Zbl

[15] Dafalias Y. F., Plastic spin: necessity or redundancy?, Int. J. Plasticity, 14:9 (1998), 909–931 | DOI | Zbl

[16] Greshnov V. M., Fiziko-matematicheskaya teoriya bolshikh neobratimykh deformatsii metallov, Fizmatlit, M., 2018

[17] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980

[18] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001; 2003

[19] Blend D. R., Nelineinaya dinamicheskaya teoriya uprugosti, Mir, M., 1972

[20] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Moskovskii Litsei, M., 1998