Analysis of the effect of random noise on synchronization in a system of two coupled duffing oscillators
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of statistical modeling, the questions are studied of the effect of random noise on synchronization in the system of stochastic differential equations (SDE system) of two coupled Duffing oscillators. Calculation of various frequency characteristics for the numerical solution of a nonlinear SDE system is carried out by the generalized explicit Euler method. The results of numerical experiments are presented.
Keywords: stochastic differential equations, generalized Euler method, Monte Carlo method, synchronization, coupled Duffing oscillators, supercomputer, frequency integral curve, frequency phase portrait.
@article{SJIM_2019_22_1_a4,
     author = {A. A. Ivanov},
     title = {Analysis of the effect of random noise on synchronization in a system of two coupled duffing oscillators},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a4/}
}
TY  - JOUR
AU  - A. A. Ivanov
TI  - Analysis of the effect of random noise on synchronization in a system of two coupled duffing oscillators
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 41
EP  - 52
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a4/
LA  - ru
ID  - SJIM_2019_22_1_a4
ER  - 
%0 Journal Article
%A A. A. Ivanov
%T Analysis of the effect of random noise on synchronization in a system of two coupled duffing oscillators
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 41-52
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a4/
%G ru
%F SJIM_2019_22_1_a4
A. A. Ivanov. Analysis of the effect of random noise on synchronization in a system of two coupled duffing oscillators. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a4/

[1] Artemev S. S., Marchenko M. A., Korneev V. D., Ivanov A. A., Smirnov D. D., Yakunin M. A., Analiz stokhasticheskikh kolebanii metodom Monte-Karlo na superkompyuterakh, Izd-vo SO RAN, Novosibirsk, 2016

[2] Kuznetsov A. P., Stankevich N. V., Tyuryukina L. V., “Svyazannye ostsillyatory Van-der-Polya i Van-der-Polya–Duffinga: fazovaya dinamika i kompyuternoe modelirovanie”, Izv. vuzov, 17:4 (2008), 101–136

[3] The Duffing Equation: Nonlinear Oscillators and Their Behaviour, John Wiley Sons, 2011 | Zbl

[4] Vincent U. E., Kenfack A., “Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillators”, Physica Scripta, 77:4 (2008), 045005 | DOI | Zbl

[5] Kenfack A., “Bifurcation structure of two coupled periodically driven double-well Duffing oscillators”, Chaos, Solitons Fractals, 15:2 (2003), 205–218 ; https://hal.archives-ouvertes.fr/hal-01356790 | DOI | MR | Zbl

[6] Vincent U. E., Kenfack A., Bifurcation and Chaos in coupled periodically forced non-identical Duffing oscillators, arXiv: nlin/0607074 [nlin.CD]

[7] Marchenko M. A., Ivanov A. A., Smirnov D. D., “Kompleks programm AMIKS dlya chislennogo resheniya SDU metodom Monte-Karlo na superkompyuterakh”, Zhurn. vychisl. tekhnologii, 22:3 (2017), 61–70 | MR | Zbl

[8] Artemev S. S., Ivanov A. A., Smirnov D. D., “Novye chastotnye kharakteristiki chislennogo resheniya stokhasticheskikh differentsialnykh uravnenii”, Sib. zhurn. industr. matematiki, 18:1 (2015), 15–26 | MR | Zbl

[9] Kopytov V. V., Kostenko K. S., “Issledovanie effekta peremezhaemosti v sisteme svyazannykh nelineinykh ostsillyatorov”, Zhurn. radioelektroniki, 2003, no. 3 http://jre.cplire.ru/jre/mar03/3/text.html