The set of relative equilibria of a stationary orbital asymmetric gyrostat
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 116-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the well-known problem of relative equilibria (an equilibrium position in the orbital coordinate system) of a gyrostat satellite and their dependence on the design parameters. A new geometric approach to the analysis of the set of relative equilibria is developed. It is proposed to determine the relative equilibria in the corresponding three-dimensional Euclidean space using special aggregated parameters of the system by the coordinates of the intersection points of two pairs of corresponding hyperbolic cylinders with the sphere of the unit radius. It is shown that, for arbitrary values of the gyrostatic moment and other parameters of the system, there are at least eight different relative equilibria.
Keywords: orbital gyrostat, circular orbit, central Newtonian field of attraction forces, structure of the set of equilibria.
Mots-clés : relative equilibria
@article{SJIM_2019_22_1_a10,
     author = {S. V. Chaikin},
     title = {The set of relative equilibria of a stationary orbital asymmetric gyrostat},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {116--121},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a10/}
}
TY  - JOUR
AU  - S. V. Chaikin
TI  - The set of relative equilibria of a stationary orbital asymmetric gyrostat
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 116
EP  - 121
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a10/
LA  - ru
ID  - SJIM_2019_22_1_a10
ER  - 
%0 Journal Article
%A S. V. Chaikin
%T The set of relative equilibria of a stationary orbital asymmetric gyrostat
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 116-121
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a10/
%G ru
%F SJIM_2019_22_1_a10
S. V. Chaikin. The set of relative equilibria of a stationary orbital asymmetric gyrostat. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 116-121. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a10/

[1] Beletskii V. V., Dvizhenie iskusstvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965

[2] Beletskii V. V., Chaikin S. V., “Uchet peremescheniya tsentra mass girostata s uprugim sterzhnem pri analize ustoichivosti semeistva ego ravnovesii”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2006, no. 1, 42–47

[3] Chaikin S. V., “Odnoosnye ravnovesnye orientatsii na prityagivayuschii tsentr simmetrichnogo vytyanutogo orbitalnogo girostata s uprugim sterzhnem”, Sib. zhurn. industr. matematiki, 20:3 (2017), 92–100 | Zbl

[4] Stepanov S. Ya., “O mnozhestve statsionarnykh dvizhenii sputnika-girostata v tsentralnom nyutonovskom pole sil i ikh ustoichivosti”, Prikl. matematika i mekhanika, 33:4 (1969), 737–744 | Zbl

[5] Chaikin S. V., “Otnositelnye ravnovesiya girostata na krugovoi orbite pri malom vykhode girostaticheskogo momenta iz ego glavnoi tsentralnoi ploskosti inertsii”, 9 Vseros. s'ezd po teoreticheskoi i prikladnoi mekhanike, Annotatsii dokl., v. 1, Izd-vo NNGU, Nizhnii Novgorod, 2006, 116–117 | Zbl

[6] Anchev A. A., “O stabilizatsii otnositelnogo ravnovesiya sputnika s makhovikami”, Kosmicheskie issledovaniya, 4:12 (1966), 192–202

[7] Roberson R. E., Hooker W. W., “Gravitational equilibria of rigid body containing symmetric rotors”, Proc. 17 Congress Internat. Astronaut. (Madrid, 1966), v. 4, Dunod, Paris, 1967, 203–210

[8] Rubanovskii V. N., “O vetvlenii i ustoichivosti otnositelnykh ravnovesii sputnika-girostata”, Prikl. matematika i mekhanika, 55:4 (1991), 565–571 | Zbl

[9] Sarychev V. A., Gutnik S. A., “K voprosu o polozheniyakh otnositelnogo ravnovesiya sputnika-girostata”, Kosmicheskie issledovaniya, 22:3 (1984), 323–326

[10] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989

[11] Gutnik S. A., Guerman A., Sarychev V. A., “Application of computer algebra methods to investigation of influence of constant torque on stationary motions of satellite”, Computer Algebra in Sci. Computing, Lecture Notes in Computer Science, 9301, 2015, 198–209 | DOI | MR | Zbl