On a method of studying identification problems for second order equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 13-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some method is proposed for studying the identification problems for second-order equations of evolutionary type, in particular, parabolic. We give the new representations of solutions and coefficients of such type of equations using integral transformations.
Keywords: linear parabolic equations, identification problem.
@article{SJIM_2019_22_1_a1,
     author = {Yu. E. Anikonov and M. V. Neshchadim},
     title = {On a method of studying identification problems for second order equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a1/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - M. V. Neshchadim
TI  - On a method of studying identification problems for second order equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 13
EP  - 23
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a1/
LA  - ru
ID  - SJIM_2019_22_1_a1
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A M. V. Neshchadim
%T On a method of studying identification problems for second order equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 13-23
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a1/
%G ru
%F SJIM_2019_22_1_a1
Yu. E. Anikonov; M. V. Neshchadim. On a method of studying identification problems for second order equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a1/

[1] Prigozhin I. R., Ot suschestvuyuschego k voznikayuschemu. Vremya i slozhnost v fizicheskikh naukakh, Nauka, M., 1985

[2] Anikonov Yu. E., “Differentsialnye tozhdestva dlya uravnenii s chastnymi proizvodnymi”, Sib. zhurn. industr. matematiki, 17:2 (2014), 11–17

[3] Anikonov Yu. E., Neschadim M. V., “Differentsialnye tozhdestva dlya nelineinykh uravnenii s chastnymi proizvodnymi”, Sib. zhurn. chistoi i prikl. matematiki, 15:1 (2015), 21–28 | Zbl

[4] Anikonov Yu. E., Ayupova N. B., “Luchevye razlozheniya i tozhdestva dlya uravnenii vtorogo poryadka s prilozheniyami k obratnym zadacham”, Sib. zhurn. chistoi i prikl. matematiki, 17:1 (2017), 3–16

[5] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[6] Anikonov Yu. E., Nekotorye metody issledovaniya mnogomernykh obratnykh zadach dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1978

[7] Anikonov Yu. E., Pestov L. N., Formuly v lineinykh i nelineinykh zadachakh tomografii, Izd-vo NGU, Novosibirsk, 1990

[8] Neschadim M. V., “Differentsialnye sootnosheniya v obratnoi zadache opredeleniya metriki po godografu”, Dokl. AN, 427:3 (2009), 318–320 | Zbl

[9] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979