Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_4_a8, author = {A. A. Sedipkov}, title = {Application of spectral methods to inverse dynamic problem of seismicity of a~stratified medium}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {110--120}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a8/} }
TY - JOUR AU - A. A. Sedipkov TI - Application of spectral methods to inverse dynamic problem of seismicity of a~stratified medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 110 EP - 120 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a8/ LA - ru ID - SJIM_2018_21_4_a8 ER -
%0 Journal Article %A A. A. Sedipkov %T Application of spectral methods to inverse dynamic problem of seismicity of a~stratified medium %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 110-120 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a8/ %G ru %F SJIM_2018_21_4_a8
A. A. Sedipkov. Application of spectral methods to inverse dynamic problem of seismicity of a~stratified medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 110-120. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a8/
[1] Akkuratov G. V., Dmitriev V. I., “Metod rascheta polya ustanovivshikhsya uprugikh kolebanii v sloistoi srede”, Zhurn. vychisl. matematiki i mat. fiziki, 24:2 (1984), 272–286 | MR | Zbl
[2] Fatyanov A. G., “Poluanaliticheskii metod resheniya pryamykh dinamicheskikh zadach v sloistykh sredakh”, Dokl. RAN, 310:2 (1990), 323–327 | MR
[3] Karchevskii A. L., Fatyanov A. G., “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviemdlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matematiki, 4:3 (2001), 259–269 | Zbl
[4] Kurpinar E., Karchevsky A. L., “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Problems, 20:3 (2004), 953–976 | DOI | MR | Zbl
[5] Karchevskii A. L., “Pryamaya dinamicheskaya zadacha seismiki dlya gorizontalno-sloistykh sred”, Sib. elektron. mat. izvestiya, 2 (2005), 23–61 http://semr.math.nsc.ru/v2/p23-61.pdf | MR | Zbl
[6] Romanov V. G., “Opredelenie parametrov sloistoi kusochno-postoyannoi sredy pri neizvestnoi forme impulsnogo istochnika”, Sib. mat. zhurn., 48:6 (2007), 1338–1350 | MR | Zbl
[7] Romanov V. G., “O zadache opredeleniya parametrov uprugoi sloistoi sredy i impulsnogo istochnika”, Sib. mat. zhurn., 49:5 (2008), 1157–1183 | MR
[8] Alekseev A. S., “Obratnye dinamicheskie zadachi seismiki”, Nekotorye metody i algoritmy interpretatsii geofizicheskikh dannykh, Nauka, M., 1967, 9–48
[9] Alekseev A. S., Belonosov V. S., “The scattering of plane waves in inhomogeneous half-space”, Appl. Math. Lett., 8:2 (1995), 13–19 | DOI | MR | Zbl
[10] Alekseev A. S., Belonosov V. S., “Direct and inverse problems associated with inclined passing of SH-waves through 1D inhomogeneous medium”, Bull. Novosibirsk Comput. Center. Ser. Numerical Analysis, 1994, no. 5, 1–25 | Zbl
[11] Sedipkov A. A., “Pryamaya i obratnaya zadachi akusticheskogo zondirovaniya v sloistoi srede s razryvnymi parametrami”, Sib. zhurn. industr. matematiki, 17:1 (2014), 120–134 | MR | Zbl
[12] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya”, Uspekhi mat. nauk, 14:4 (1959), 57–119 | MR | Zbl
[13] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR
[14] Sedipkov A. A., “The inverse spectral problem for the Sturm–Liouville operator with discontinuous potential”, J. Inverse Ill-Posed Probl., 20:2 (2012), 139–167 | DOI | MR | Zbl
[15] Sedipkov A. A., “Vosstanovlenie razryvov koeffitsienta operatora Shturma–Liuvillya v impedansnoi forme”, Sib. mat. zhurn., 56:2 (2015), 455–462 | MR | Zbl
[16] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964