On the existence and construction of common Lyapunov functions for switched discrete systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 75-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of stability of switched discrete systems with the generalized homogeneous right-hand sides. The conditions are obtained for the existence of the common Lyapunov function, and a method for its construction is proposed in the form of a combination of the partial Lyapunov functions obtained for isolated subsystems. For a special case of linear three-dimensional systems, some algorithms are proposed for constructing common Lyapunov functions as quadratic and fourth degree forms. Some examples illustrate the effectiveness of the proposed approach.
Keywords: switched discrete system, stability, common Lyapunov function.
@article{SJIM_2018_21_4_a5,
     author = {A. A. Kosov and M. V. Kozlov},
     title = {On the existence and construction of common {Lyapunov} functions for switched discrete systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a5/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - M. V. Kozlov
TI  - On the existence and construction of common Lyapunov functions for switched discrete systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 75
EP  - 85
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a5/
LA  - ru
ID  - SJIM_2018_21_4_a5
ER  - 
%0 Journal Article
%A A. A. Kosov
%A M. V. Kozlov
%T On the existence and construction of common Lyapunov functions for switched discrete systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 75-85
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a5/
%G ru
%F SJIM_2018_21_4_a5
A. A. Kosov; M. V. Kozlov. On the existence and construction of common Lyapunov functions for switched discrete systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 75-85. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a5/

[1] Shorten R., Wirth F., Mason O., Wulf K., King C., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl

[2] Shpilevaya O. Ya., Kotov K. Yu., “Pereklyuchaemye sistemy: ustoichivost i proektirovanie (Obzor)”, Avtometriya, 44:5 (2008), 71–87

[3] Hai Lin, Antsaklis P. J., “Stability and stabilizability of switched linear systems: a survey of recent results”, IEEE Trans. Automat. Contr., 54:2 (2009), 308–322 | DOI | MR | Zbl

[4] Unsolved Problems in Mathematical Systems and Control Theory, Princeton Univ. Press, Princeton, Oxford, 2004 | Zbl

[5] Liberzon D., Switching in Systems and Control, Birkhauser, Boston, 2003 | MR | Zbl

[6] Vasilev S. N., Kosov A. A., “Analiz dinamiki gibridnykh sistem s pomoschyu obschikh funktsii Lyapunova i mnozhestvennykh gomomorfizmov”, Avtomatika i telemekhanika, 2011, no. 6, 27–47 | MR | Zbl

[7] Aleksandrov A. Yu., Kosov A. A., Chen Ya., “Ob ustoichivosti i stabilizatsii mekhanicheskikh sistem s pereklyucheniyami”, Avtomatika i telemekhanika, 2011, no. 6, 5–17 | MR | Zbl

[8] Aleksandrov A. Yu., Kosov A. A., Platonov A. V., “On the asymptotic stability of switched homogeneous systems”, Systems Control Letters, 61:1 (2012), 127–133 | DOI | MR | Zbl

[9] Zubov V. I., Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya, Mashinostroenie, L., 1974

[10] Bobylev N. A., Ilin A. V., Korovin S. K., Fomichev V. V., “Ob ustoichivosti semeistv dinamicheskikh sistem”, Differents. uravneniya, 38:4 (2002), 447–452 | MR | Zbl

[11] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[12] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR

[13] Vasilev S. N., Kosov A. A., “Obschie funktsii Lyapunova i vektor-funktsii sravneniya Matrosova v analize gibridnykh sistem”, Tr. 10 Mezhdunar. Chetaevskoi konf. “Analiticheskaya mekhanika, ustoichivost i upravlenie”, Plenarnye doklady (Kazan, 12–16 iyunya 2012 g.), Izd-vo Kazan. gos. tekhn. un-ta, Kazan, 2012, 3–16

[14] Sirazetdinov T. K., Aminov A. B., “K zadache postroeniya funktsii Lyapunova dlya issledovaniya ustoichivosti v tselom resheniya sistem s polinomialnoi pravoi chastyu”, Metod funktsii Lyapunova i ego prilozheniya, Nauka, Novosibirsk, 1981, 72–87