Determination of discontinuities of a~function in a~domain with refraction from its attenuated ray transform
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 51-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results of numerical investigations are presented for the problem of determination of discontinuities of an unknown function that has the meaning of the internal source distribution and is given in a domain with absorption and refraction, on using the attenuated ray transform of the function. The refraction and the absorption coefficient are assumed to be given. The behavior of the available and newly constructed discontinuity indicator operators is investigated in some numerical tests. Some modification of discontinuity indicators was carried out for the purpose of applying them in the model of refractive tomography with absorption. Numerical methods are applied to investigate the possibility of using the operators of this kind for solving the problem of finding the discontinuities of a function from its attenuated ray transform; the degree is investigated of the influence on the recovery quality of such factors as the level of the noise introduced into the generated data, the parameters of metrics, the magnitude and variation of the absorption coefficient.
Keywords: tomography, discontinuous function, attenuated ray transform, back-projection, discontinuity indicator.
Mots-clés : absorption, refraction, internal source
@article{SJIM_2018_21_4_a4,
     author = {E. Yu. Derevtsov and S. V. Maltseva and I. E. Svetov},
     title = {Determination of discontinuities of a~function in a~domain with refraction from its attenuated ray transform},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {51--74},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a4/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - S. V. Maltseva
AU  - I. E. Svetov
TI  - Determination of discontinuities of a~function in a~domain with refraction from its attenuated ray transform
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 51
EP  - 74
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a4/
LA  - ru
ID  - SJIM_2018_21_4_a4
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A S. V. Maltseva
%A I. E. Svetov
%T Determination of discontinuities of a~function in a~domain with refraction from its attenuated ray transform
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 51-74
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a4/
%G ru
%F SJIM_2018_21_4_a4
E. Yu. Derevtsov; S. V. Maltseva; I. E. Svetov. Determination of discontinuities of a~function in a~domain with refraction from its attenuated ray transform. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 51-74. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a4/

[1] Derevtsov E. Yu., Kleshchev A. G., Sharafutdinov V. A., “Numerical solution of the emission 2D-tomography problem for a medium with absorption and refraction”, J. Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | DOI | MR | Zbl

[2] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., Schuster T., “Numerical B-spline solution of emission and vector 2D-tomography problems for media with absorbtion and refraction”, Proc. 2008 IEEE Region 8 Internat. Conf. on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08, Novosibirsk, 2008, 212–217

[3] Svetov I. E., Derevtsov E. Yu., Volkov Yu. S., Schuster T., “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Math. Comput. in Simulation, 97 (2014), 207–223 | DOI | MR

[4] Derevtsov E. Yu., “Nekotorye podkhody k zadache vizualizatsii singulyarnogo nositelya skalyarnykh, vektornykh i tenzornykh polei po tomograficheskim dannym”, Sib. elektron. mat. izvestiya, 5 (2008), 632–646 URL: http://semr.math.nsc.ru | MR | Zbl

[5] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, v. 5, Obobschennye funktsii, Fizmatgiz, M., 1962

[6] Faridani A., Ritman E. L., Smith K. T., “Local tomography”, SIAM J. Appl. Math., 52:2 (1992), 459–484 | DOI | MR | Zbl

[7] Faridani A., Finch D. V., Ritman E. L., Smith K. T., “Local tomography. II”, SIAM J. Appl. Math., 57:4 (1997), 1095–1127 | DOI | MR | Zbl

[8] Quinto E. T., “Singularities of the $X$-ray transform and limited data tomography in $R^2$ and $R^3$”, SIAM J. Math. Anal., 24 (1993), 1215–1225 | DOI | MR | Zbl

[9] Ramm E. T., Katsevich A. I., The Radon transform and local tomography, CRC Press, Boca Raton, 1996 | MR | Zbl

[10] Louis A. K., “Feature reconstruction in inverse problems”, Inverse Problems, 27:6 (2011), Art. 065010 | DOI | MR

[11] Vainberg E. I., Kazak I. A., Faingoiz M. L., “$X$-ray computerized back projection tomography with filtration by double differentiation. Procedure and information features”, Soviet J. Nondest. Test, 21 (1985), 106–113

[12] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Transport Equation and Tomography, VSP, Utrecht, 2002 | MR | Zbl

[13] Derevtsov E. Yu., Pikalov V. V., “Vosstanovlenie vektornogo polya i ego singulyarnostei po luchevym preobrazovaniyam”, Sib. zhurn. vychisl. matematiki, 14:1 (2011), 29–46 | Zbl

[14] Derevtsov E. Yu., Maltseva S. V., “Vosstanovlenie singulyarnogo nositelya tenzornogo polya, zadannogo v refragiruyuschei srede, po ego luchevomu preobrazovaniyu”, Sib. zhurn. industr. matematiki, 18:3 (2015), 11–25 | DOI | MR | Zbl

[15] Derevtsov E. Yu., Maltseva S. V., Svetov I. E., “Mathematical models and algorithms for reconstruction of singular support of functions and vector fields by tomographic data”, Eurasian J. Math. Comput. Appl., 3:4 (2015), 4–44 | MR

[16] Sharafutdinov V. A., Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR

[17] Derevtsov E. Yu., Svetov I. E., “Tomography of tensor fields in the plane”, Eurasian J. Math. Comput. Appl., 3:2 (2015), 24–68

[18] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, ryadov i proizvedenii, BKhV-Peterburg, SPb., 2011 | MR

[19] Derevtsov E. Yu., Maltseva S. V., Svetov I. E., “Priblizhennoe obraschenie operatora luchevogo preobrazovaniya v refraktsionnoi tomografii”, Sib. elektron. mat. izvestiya, 11 (2014), 833–856 URL: http://semr.math.nsc.ru | MR | Zbl