Solvability conditions for the second boundary value problem for the Navier system
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the second boundary value problem in a half-space for the Navier system.We provide some necessary conditions for unique solvability in Sobolev spaces.
Keywords: elliptic system, boundary value problem, Navier system, solvability, Sobolev space, necessary conditions.
@article{SJIM_2018_21_4_a0,
     author = {L. N. Bondar},
     title = {Solvability conditions for the second boundary value problem for the {Navier} system},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/}
}
TY  - JOUR
AU  - L. N. Bondar
TI  - Solvability conditions for the second boundary value problem for the Navier system
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 3
EP  - 14
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/
LA  - ru
ID  - SJIM_2018_21_4_a0
ER  - 
%0 Journal Article
%A L. N. Bondar
%T Solvability conditions for the second boundary value problem for the Navier system
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 3-14
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/
%G ru
%F SJIM_2018_21_4_a0
L. N. Bondar. Solvability conditions for the second boundary value problem for the Navier system. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/

[1] Vekua I. N., Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982

[2] Demidenko G. V., “On solvability of boundary value problems for quasi-elliptic systems in $\mathbb R^n_+$”, J. Anal. Appl., 4:1 (2006), 1–11 | DOI | MR | Zbl

[3] Bondar L. N., “Usloviya razreshimosti kraevykh zadach dlya kvaziellipticheskikh sistem v poluprostranstve”, Differents. uravneniya, 48:3 (2012), 341–350 | Zbl

[4] Demidenko G. V., “Integralnye operatory, opredelyaemye kvaziellipticheskimi uravneniyami. II”, Sib. mat. zhurn., 35:1 (1994), 41–65 | MR | Zbl

[5] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998