Solvability conditions for the second boundary value problem for the Navier system
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
Under consideration is the second boundary value problem in a half-space for the Navier system.We provide some necessary conditions for unique solvability in Sobolev spaces.
Keywords:
elliptic system, boundary value problem, Navier system, solvability, Sobolev space, necessary conditions.
@article{SJIM_2018_21_4_a0,
author = {L. N. Bondar},
title = {Solvability conditions for the second boundary value problem for the {Navier} system},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {3--14},
year = {2018},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/}
}
L. N. Bondar. Solvability conditions for the second boundary value problem for the Navier system. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/
[1] Vekua I. N., Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982
[2] Demidenko G. V., “On solvability of boundary value problems for quasi-elliptic systems in $\mathbb R^n_+$”, J. Anal. Appl., 4:1 (2006), 1–11 | DOI | MR | Zbl
[3] Bondar L. N., “Usloviya razreshimosti kraevykh zadach dlya kvaziellipticheskikh sistem v poluprostranstve”, Differents. uravneniya, 48:3 (2012), 341–350 | Zbl
[4] Demidenko G. V., “Integralnye operatory, opredelyaemye kvaziellipticheskimi uravneniyami. II”, Sib. mat. zhurn., 35:1 (1994), 41–65 | MR | Zbl
[5] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998