Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_4_a0, author = {L. N. Bondar}, title = {Solvability conditions for the second boundary value problem for the {Navier} system}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {3--14}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/} }
TY - JOUR AU - L. N. Bondar TI - Solvability conditions for the second boundary value problem for the Navier system JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 3 EP - 14 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/ LA - ru ID - SJIM_2018_21_4_a0 ER -
L. N. Bondar. Solvability conditions for the second boundary value problem for the Navier system. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a0/
[1] Vekua I. N., Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982
[2] Demidenko G. V., “On solvability of boundary value problems for quasi-elliptic systems in $\mathbb R^n_+$”, J. Anal. Appl., 4:1 (2006), 1–11 | DOI | MR | Zbl
[3] Bondar L. N., “Usloviya razreshimosti kraevykh zadach dlya kvaziellipticheskikh sistem v poluprostranstve”, Differents. uravneniya, 48:3 (2012), 341–350 | Zbl
[4] Demidenko G. V., “Integralnye operatory, opredelyaemye kvaziellipticheskimi uravneniyami. II”, Sib. mat. zhurn., 35:1 (1994), 41–65 | MR | Zbl
[5] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998