Robust controllability of linear differential-algebraic equations with unstructured uncertainty
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 104-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the linear stationary systems of ordinary differential equations (ODEs) that are unsolvedwith respect to the derivative of the unknown vector-function and degenerate identically in the domain of definition. These systems are usually called differential-algebraic equations (DAEs). The measure of how a system of DAEs is unsolved with respect to the derivative is an integer which is called the index of the system of DAEs. The analysis is carried out under the assumption of existence of a structural form with separated differential and algebraic subsystems. We investigate the robust controllability of these systems (controllability in the conditions of uncertainty). The sufficient conditions for the robust complete and $R$-controllability of a system of DAEs with the indices 1 and 2 are obtained.
Keywords: differential-algebraic equations, descriptor system, perturbed system, robust controllability.
@article{SJIM_2018_21_3_a9,
     author = {P. S. Petrenko},
     title = {Robust controllability of linear differential-algebraic equations with unstructured uncertainty},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {104--115},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/}
}
TY  - JOUR
AU  - P. S. Petrenko
TI  - Robust controllability of linear differential-algebraic equations with unstructured uncertainty
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 104
EP  - 115
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/
LA  - ru
ID  - SJIM_2018_21_3_a9
ER  - 
%0 Journal Article
%A P. S. Petrenko
%T Robust controllability of linear differential-algebraic equations with unstructured uncertainty
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 104-115
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/
%G ru
%F SJIM_2018_21_3_a9
P. S. Petrenko. Robust controllability of linear differential-algebraic equations with unstructured uncertainty. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 104-115. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/

[1] Lin C., Wang J. L., Soh C.-B., “Necessary and sufficient conditions for the controllability of linear interval descriptor systems”, Automatica, 34:3 (1998), 363–367 | DOI | MR | Zbl

[2] Chou J. H., Chen S. H., Fung R. F., “Sufficient conditions for the controllability of linear descriptor systems with both time-varying structured and unstructured parameter uncertainties”, IMA J. Math. Control Inform., 18:4 (2001), 469–477 | DOI | MR | Zbl

[3] Lin C., Wang J. L., Soh C.-B., “Robust $C$-controllability and/or $C$-observability for uncertain descriptor systems with interval perturbation in all matrices”, IEEE Trans. Automat. Control, 44:9 (1999), 1768–1773 | DOI | MR | Zbl

[4] Lin C., Wang J. L., Soh C.-B., Yang G. H., “Robust controllability and robust closed-loop stability with static output feedback for a class of uncertain descriptor systems”, Linear Algebra Appl., 297:1–3 (1999), 133–155 | DOI | MR | Zbl

[5] Chou J.-H., Chen S.-H., Zhang Q.-L., “Robust controllability for linear uncertain descriptor systems”, Linear Algebra Appl., 414:2–3 (2006), 632–651 | DOI | MR | Zbl

[6] Shcheglova A. A., Petrenko P. S., “The $R$-observability and $R$-controllability of linear differential-algebraic systems”, Russian Mathematics, 56:3 (2012), 66–82 | DOI | MR | Zbl

[7] Shcheglova A. A., Petrenko P. S., “Stabilizability of solutions to linear and nonlinear differential-algebraic equations”, J. Math. Sci., 196:4 (2014), 596–615 | DOI | MR | Zbl

[8] Shcheglova A. A., Petrenko P. S., “Stabilization of solutions for nonlinear differential-algebraic equations”, Automation and Remote Control, 76:4 (2015), 573–588 | DOI | MR | Zbl

[9] Petrenko P. S., “Local $R$-observability of differential-algebraic equations”, J. Siberian Federal Univ. Mathematics Physics, 9:3 (2016), 353–363 | DOI

[10] Petrenko P. S., “Differential controllability of linear systems of differential-algebraic equations”, J. Siberian Federal Univ. Mathematics Physics 2017, 10:3, 320–329 | DOI | MR

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[12] Shcheglova A. A., “Controllability of nonlinear algebraic differential systems”, Automation and Remote Control, 69:10 (2008), 1700–1722 | DOI | MR | Zbl

[13] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980

[14] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415

[15] Shcheglova A. A., “The solvability of the initial problem for a degenerate linear hybrid system with variable coefficients”, Russian Mathematics, 54:9 (2010), 49–61 | DOI | MR | Zbl