Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_3_a9, author = {P. S. Petrenko}, title = {Robust controllability of linear differential-algebraic equations with unstructured uncertainty}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {104--115}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/} }
TY - JOUR AU - P. S. Petrenko TI - Robust controllability of linear differential-algebraic equations with unstructured uncertainty JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 104 EP - 115 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/ LA - ru ID - SJIM_2018_21_3_a9 ER -
%0 Journal Article %A P. S. Petrenko %T Robust controllability of linear differential-algebraic equations with unstructured uncertainty %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 104-115 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/ %G ru %F SJIM_2018_21_3_a9
P. S. Petrenko. Robust controllability of linear differential-algebraic equations with unstructured uncertainty. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 104-115. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a9/
[1] Lin C., Wang J. L., Soh C.-B., “Necessary and sufficient conditions for the controllability of linear interval descriptor systems”, Automatica, 34:3 (1998), 363–367 | DOI | MR | Zbl
[2] Chou J. H., Chen S. H., Fung R. F., “Sufficient conditions for the controllability of linear descriptor systems with both time-varying structured and unstructured parameter uncertainties”, IMA J. Math. Control Inform., 18:4 (2001), 469–477 | DOI | MR | Zbl
[3] Lin C., Wang J. L., Soh C.-B., “Robust $C$-controllability and/or $C$-observability for uncertain descriptor systems with interval perturbation in all matrices”, IEEE Trans. Automat. Control, 44:9 (1999), 1768–1773 | DOI | MR | Zbl
[4] Lin C., Wang J. L., Soh C.-B., Yang G. H., “Robust controllability and robust closed-loop stability with static output feedback for a class of uncertain descriptor systems”, Linear Algebra Appl., 297:1–3 (1999), 133–155 | DOI | MR | Zbl
[5] Chou J.-H., Chen S.-H., Zhang Q.-L., “Robust controllability for linear uncertain descriptor systems”, Linear Algebra Appl., 414:2–3 (2006), 632–651 | DOI | MR | Zbl
[6] Shcheglova A. A., Petrenko P. S., “The $R$-observability and $R$-controllability of linear differential-algebraic systems”, Russian Mathematics, 56:3 (2012), 66–82 | DOI | MR | Zbl
[7] Shcheglova A. A., Petrenko P. S., “Stabilizability of solutions to linear and nonlinear differential-algebraic equations”, J. Math. Sci., 196:4 (2014), 596–615 | DOI | MR | Zbl
[8] Shcheglova A. A., Petrenko P. S., “Stabilization of solutions for nonlinear differential-algebraic equations”, Automation and Remote Control, 76:4 (2015), 573–588 | DOI | MR | Zbl
[9] Petrenko P. S., “Local $R$-observability of differential-algebraic equations”, J. Siberian Federal Univ. Mathematics Physics, 9:3 (2016), 353–363 | DOI
[10] Petrenko P. S., “Differential controllability of linear systems of differential-algebraic equations”, J. Siberian Federal Univ. Mathematics Physics 2017, 10:3, 320–329 | DOI | MR
[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR
[12] Shcheglova A. A., “Controllability of nonlinear algebraic differential systems”, Automation and Remote Control, 69:10 (2008), 1700–1722 | DOI | MR | Zbl
[13] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980
[14] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415
[15] Shcheglova A. A., “The solvability of the initial problem for a degenerate linear hybrid system with variable coefficients”, Russian Mathematics, 54:9 (2010), 49–61 | DOI | MR | Zbl