Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_3_a6, author = {E. V. Kurkina and V. V. Lyubimov}, title = {Estimation of the probability of capture into resonance and parametric analysis in the descent of an asymmetric spacecraft in an atmosphere}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {74--83}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a6/} }
TY - JOUR AU - E. V. Kurkina AU - V. V. Lyubimov TI - Estimation of the probability of capture into resonance and parametric analysis in the descent of an asymmetric spacecraft in an atmosphere JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 74 EP - 83 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a6/ LA - ru ID - SJIM_2018_21_3_a6 ER -
%0 Journal Article %A E. V. Kurkina %A V. V. Lyubimov %T Estimation of the probability of capture into resonance and parametric analysis in the descent of an asymmetric spacecraft in an atmosphere %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 74-83 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a6/ %G ru %F SJIM_2018_21_3_a6
E. V. Kurkina; V. V. Lyubimov. Estimation of the probability of capture into resonance and parametric analysis in the descent of an asymmetric spacecraft in an atmosphere. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 74-83. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a6/
[1] Lorenz R., “Attitude and angular rates of planetary probes during atmospheric descent: Implications for imaging”, J. Planetary and Space Science, 58 (2010), 838–846 | DOI
[2] Kazakovtsev V. P., Koryanov V. V., “Metod issledovaniya dinamiki uglovogo dvizheniya kosmicheskogo spuskaemogo apparata s naduvnym tormoznym ustroistvom”, Vestn. MGTU im. N. E. Baumana. Ser. Mashinostroenie, 2012, no. 3, 39–46
[3] Lyubimov V. V., Lashin V. S., “External stability of a resonance during the descent of a SC with a small variable asymmetry in the martian atmosphere”, J. Adv. Space Research, 59:6 (2017), 1607–1613 | DOI
[4] Zabolotnov Yu. M., Lyubimov V. V., “Application of the method of integral manifolds for construction of resonant curves for the problem of spacecraft entry into the atmosphere”, J. Cosmic Research, 41 (2003), 453–459 | DOI
[5] Lyubimov V. V., Kurkina E. V., “Simulation of the dynamics of non-resonant motion in a controlled descent of an asymmetric spacecraft in the low-density atmosphere”, CEUR Workshop Proceedings, 1638 (2016), 610–621
[6] Lyubimov V. V., “Asymptotic analysis of the secondary resonance effects in the rotation of a SC with small asymmetry in the atmosphere”, J. Russian Aeronautics, 3:57 (2014), 245–252 | DOI
[7] Belokonov V. M., Zabolotnov M. Yu., “Otsenka veroyatnosti zakhvata v rezonansnyi rezhim dvizheniya kosmicheskogo apparata pri spuske v atmosferu”, Kosmicheskie issledovaniya, 40:5 (2002), 503–514
[8] Lyubimov V. V., Kurkina E. V., “Veroyatnost zakhvata v rezonans asimmetrichnoi kapsuly pri upravlyaemom spuske v atmosfere Marsa”, Mekhatronika. Avtomatizatsiya. Upravlenie, 18:8 (2017), 564–571
[9] Lyubimov V. V., “Dynamics and control of angular acceleration of a re-entry spacecraft with a small asymmetry in the atmosphere in the presence of the secondary resonance effect”, Internat. Siberian Conf. on Control and Communications, Omsk, 2015, 1–4
[10] Bobylev A. V., Yaroshevskii V. A., “Otsenka uslovii zakhvata v rezhim rezonansnogo vrascheniya neupravlyaemogo tela pri spuske v atmosferu”, Kosmicheskie issledovaniya, 37:5 (1999), 515–523
[11] Lyubimov V. V., “Otsenka veroyatnosti zakhvata v rezonans pri dvizhenii dinamicheski nesimmetrichnogo tverdogo tela v atmosfere”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2007, no. 2(15), 110–115 | DOI
[12] Neishtadt A., “Averaging, capture into resonances, and chaos in nonlinear system”, CHAOS, N.Y., 1990, 261–273 | MR
[13] Zabolotnov Yu. M., “Metod issledovaniya rezonansnogo dvizheniya odnoi nelineinoi kolebatelnoi sistemy”, Izvestiya RAN. Mekhanika tverdogo tela, 1999, no. 1, 33–45
[14] Zabolotnov Yu. M., “Asimptoticheskii analiz kvazilineinykh uravnenii dvizheniya v atmosfere KA s maloi asimmetriei”, Kosmicheskie issledovaniya, 31:6 (1993), 39–50
[15] Lyubimov V. V., Vneshnyaya ustoichivost rezonansov v dinamike poleta kosmicheskikh apparatov s maloi asimmetriei, Izd-vo SNTs RAN, Samara, 2013
[16] Yaroshevskii V. A., Dvizhenie neupravlyaemogo tela v atmosfere, Mashinostroenie, M., 1978
[17] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy, v. 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl
[18] Zabolotnov Yu. M., “Rezonansnye dvizheniya staticheski ustoichivogo volchka Lagranzha”, Prikladnaya matematika i mekhanika, 80:4 (2016), 432–443 | MR
[19] Mars Polar Lander, URL: https://ru.wikipedia.org/wiki/Mars_Polar_Lander