Numerical solution of the retrospective inverse problem of heat conduction with the help of the Poisson integral
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 26-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the retrospective inverse problem that consists in determining the initial solution of the one-dimensional heat conduction equation with a given condition at the final instant of time. The solution of the problem is given in the form of the Poisson integral and is numerically realized by means of a quadrature formula leading to a system of linear algebraic equations with dense matrix. The results of numerical experiments are presented and show the efficiency of the numerical method including the case of the final condition with random errors.
Keywords: heat conduction equation, retrospective inverse problem of heat conduction, integral equation, numerical method, system of linear equations, random errors.
Mots-clés : Poisson integral
@article{SJIM_2018_21_3_a2,
     author = {V. I. Vasil'ev and A. M. Kardashevskii},
     title = {Numerical solution of the retrospective inverse problem of heat conduction with the help of the {Poisson} integral},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a2/}
}
TY  - JOUR
AU  - V. I. Vasil'ev
AU  - A. M. Kardashevskii
TI  - Numerical solution of the retrospective inverse problem of heat conduction with the help of the Poisson integral
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 26
EP  - 36
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a2/
LA  - ru
ID  - SJIM_2018_21_3_a2
ER  - 
%0 Journal Article
%A V. I. Vasil'ev
%A A. M. Kardashevskii
%T Numerical solution of the retrospective inverse problem of heat conduction with the help of the Poisson integral
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 26-36
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a2/
%G ru
%F SJIM_2018_21_3_a2
V. I. Vasil'ev; A. M. Kardashevskii. Numerical solution of the retrospective inverse problem of heat conduction with the help of the Poisson integral. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 26-36. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a2/

[1] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970

[2] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[4] Lavrentev M. M., Romanov V. G., Shishatskii S. T., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[5] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[6] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[7] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Dekker, Marcel, 2000 | MR | Zbl

[8] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004

[9] Isakov V., Inverse Problems for Partial Differential Equations, Springer-Verl., N.Y., 2006 | MR | Zbl

[10] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Uchebn. pos., Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009

[11] Samarskii A. A., Vabischevich P. N., Vasilev V. I., “Iteratsionnoe reshenie retrospektivnoi obratnoi zadachi teploprovodnosti”, Mat. modelirovanie, 9:5 (1997), 119–127 | MR | Zbl

[12] Lesnic D., Elliott L., Ingham D. B., “An iterative boundary element method for solving the backward heat conduction problem using an elliptic approximation”, Inverse Probl. Engrg., 6:2 (1998), 255–279 | DOI

[13] Johansson B. T., Lesnic D., “A procedure for determining a spacewise dependent heat source and the initial temperature”, Appl. Anal., 87:3 (2008), 265–276 | DOI | MR | Zbl

[14] Ismail-Zadeh A., Korotkii A., Schubert G., Tsepelev I., “Numerical techniques for solving the inverse retrospective problem of thermal evolution of the Earth interior”, Comput. Struct., 87:11–12 (2009), 802–811 | DOI

[15] Tsepelev I. A., “Iterative algorithm for solving the retrospective problem of thermal convection in a viscous fluid”, Fluid Dyn., 46:5 (2011), 835–842 | DOI | MR

[16] Zhenyu Zhao, Zehong Meng, “A modified Tikhonov regularization method for a backward heat equation”, Inverse Probl. Sci. Engrg., 19:8 (2011), 1175–1182 | DOI | MR | Zbl

[17] Nguyen Huy Tuan, Pham Hoang Quan, Dang Duc Trong, Le Minh Triet, “On a backward heat problem with time-dependent coefficient: Regularization and error estimates”, Appl. Math. Comput., 219 (2013), 6066–6073 | MR | Zbl

[18] Vasil'ev V. I., Kardashevsky A. M., Sivtsev P. V., “Computational experiment on the numerical solution of some inverse problems of mathematical physics”, 11 Internat. Conf. “Mesh methods for boundary-value problems and applications”, IOP Conf. Ser. Mater. Sci. Engrg., 158, 2016, 012093

[19] Vasil'ev V. I., Kardashevsky A. M., “Iterative Solution of the Retrospective Inverse problem for a Parabolic Equation Using the Conjugate Gradient Method”, 6 Conf. on Numerical Analysis and Applications (June 15–22, 2016, Lozenetz, Bulgaria), LNCS, 10187, 2017, 698–705 | MR | Zbl

[20] Samarskii A. A., Vabischevich P. N., Samarskaya E. A., Zadachi uprazhneniya po chislennym metodam, Editorial URSS, M., 2000

[21] Vasileva A. B., Tikhonov A. N., Integralnye uravneniya, Izd-vo MGU, M., 1989

[22] Yaremko O., Mogileva E., “The solution of fractal diffusion retrospective problem”, Appl. Math. Phys., 2013, no. 3, 60–66

[23] Bavrin I. I., Matrosov V. L., Yaremko O. E., Operatory preobrazovaniya dlya kraevykh zadach, integralnykh predstavlenii i vosstanovlenie zavisimostei, Prometei, M., 2016

[24] Karchevsky A. L., “On a solution of the convolution type Volterra equation of the 1-st kind”, Adv. Math. Models Applications, 2:1 (2017), 1–5 | DOI

[25] Vabischevich P. N., Chislennye metody. Vychislitelnyi praktikum, URSS, M., 2016