Estimation of the solution stability of the Cauchy problem with the data on a~time-like plane
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 116-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of continuation of the wave field from the boundary of a half-plane inside it. We obtain stability estimate for the solution of the corresponding Cauchy problem.
Keywords: Cauchy problem, continuation of the wave field, stability estimate.
@article{SJIM_2018_21_3_a10,
     author = {V. G. Romanov},
     title = {Estimation of the solution stability of the {Cauchy} problem with the data on a~time-like plane},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {116--124},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Estimation of the solution stability of the Cauchy problem with the data on a~time-like plane
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 116
EP  - 124
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/
LA  - ru
ID  - SJIM_2018_21_3_a10
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Estimation of the solution stability of the Cauchy problem with the data on a~time-like plane
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 116-124
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/
%G ru
%F SJIM_2018_21_3_a10
V. G. Romanov. Estimation of the solution stability of the Cauchy problem with the data on a~time-like plane. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 116-124. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/

[1] Carleman T., “Sur un problème d'unicité pourles systèmes d'équetions aux dérivées partielles à deux variables indépendentes”, Ark. Mat. Astr. Fys., 26B:17 (1939), 1–9 | MR | Zbl

[2] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965

[3] Khërmander L., Analiz lineinykhdifferentsi alnye operatorov s chastnymi proizvodnymi, v. 4, Mir, M., 1988

[4] Isakov V., “Carleman Estimates and Their Applications”, New Analytic and Geometric Methods in Inverse Problems, Springer-Verl., Berlin, 2004, 93–127 | DOI | MR

[5] Kabanikhin S. I., Shishlenin M. A., “Regularization of the decision prolongation problem for parabolic and elliptic equations from border part”, Eurasian J. Math. Comp. Appl., 2:2 (2014), 81–91 | MR

[6] Klibanov M. V., Timonov A., Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004 | MR | Zbl

[7] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[8] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki, Nauka, M., 1980

[9] Lasiecka I., Triggiani R., Yao P. F., “Inverse/observability estimates for second order hyperbolic equations with variable coefficients”, J. Math. Anal. Appl., 235 (1999), 13–57 | DOI | MR | Zbl

[10] Romanov V. G., “Otsenka ustoichivosti resheniya volnovogo uravneniya s dannymi Koshi na vremenipodobnoi poverkhnosti”, Sib. mat. zhurn., 46:5 (2005), 1152–1162 | MR | Zbl

[11] Romanov V. G., “Otsenka ustoichivosti v zadache o prodolzhenii resheniya volnovogo uravneniya s vremenipodobnoi tsilindricheskoi poverkhnosti”, Dokl. AN, 404:2 (2005), 162–165 | MR | Zbl

[12] Romanov V. G., “Karlemanovskie otsenki dlya giperbolicheskogo uravneniya”, Dokl. AN, 405:6 (2005), 730–734 | MR | Zbl

[13] Romanov V. G., “Karlemanovskie otsenki dlya giperbolicheskogo uravneniya vtorogo poryadka”, Sib. mat. zhurn., 47:1 (2006), 169–187 | MR | Zbl

[14] Romanov V. G., “Otsenka ustoichivosti resheniya zadachi dlya uravnenii elektrodinamiki s dannymi na vremenipodobnoi poverkhnosti”, Dokl. AN, 411:1 (2006), 16–19 | MR | Zbl

[15] Romanov V. G., “Otsenki resheniya odnogo differentsialnogo neravenstva, svyazannogo s giperbolicheskim operatorom vtorogo poryadka i dannymi Koshi na vremenipodobnoi poverkhnosti”, Dokl. AN, 406:3 (2006), 314–316 | MR | Zbl

[16] Romanov V. G., “Otsenka ustoichivosti resheniya uravnenii uprugosti s dannymi na vremenipodobnoi poverkhnosti”, Dokl. AN, 410:2 (2006), 161–163 | MR | Zbl

[17] Shishatskii S. P., “Apriornye otsenki v zadache o prodolzhenii volnovogo polya s tsilindricheskoi vremenipodobnoi poverkhnosti”, Dokl. AN SSSR, 213:1 (1973), 49–50 | MR | Zbl

[18] Triggiani R., Yao P. F., “Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot”, Appl. Math. Optim., 46:2–3 (2002), 334–375 | MR

[19] Tataru D., “Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem”, Commun. Partial Diff. Equations, 20:5–6 (1995), 855–884 | MR | Zbl

[20] Tataru D., “Carleman estimates and unique continuation for solutions to boundary value problems”, J. Math. Pure Appl., 75 (1996), 367–408 | MR | Zbl

[21] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR