Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_3_a10, author = {V. G. Romanov}, title = {Estimation of the solution stability of the {Cauchy} problem with the data on a~time-like plane}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {116--124}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/} }
TY - JOUR AU - V. G. Romanov TI - Estimation of the solution stability of the Cauchy problem with the data on a~time-like plane JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 116 EP - 124 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/ LA - ru ID - SJIM_2018_21_3_a10 ER -
%0 Journal Article %A V. G. Romanov %T Estimation of the solution stability of the Cauchy problem with the data on a~time-like plane %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 116-124 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/ %G ru %F SJIM_2018_21_3_a10
V. G. Romanov. Estimation of the solution stability of the Cauchy problem with the data on a~time-like plane. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 116-124. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a10/
[1] Carleman T., “Sur un problème d'unicité pourles systèmes d'équetions aux dérivées partielles à deux variables indépendentes”, Ark. Mat. Astr. Fys., 26B:17 (1939), 1–9 | MR | Zbl
[2] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965
[3] Khërmander L., Analiz lineinykhdifferentsi alnye operatorov s chastnymi proizvodnymi, v. 4, Mir, M., 1988
[4] Isakov V., “Carleman Estimates and Their Applications”, New Analytic and Geometric Methods in Inverse Problems, Springer-Verl., Berlin, 2004, 93–127 | DOI | MR
[5] Kabanikhin S. I., Shishlenin M. A., “Regularization of the decision prolongation problem for parabolic and elliptic equations from border part”, Eurasian J. Math. Comp. Appl., 2:2 (2014), 81–91 | MR
[6] Klibanov M. V., Timonov A., Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004 | MR | Zbl
[7] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[8] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki, Nauka, M., 1980
[9] Lasiecka I., Triggiani R., Yao P. F., “Inverse/observability estimates for second order hyperbolic equations with variable coefficients”, J. Math. Anal. Appl., 235 (1999), 13–57 | DOI | MR | Zbl
[10] Romanov V. G., “Otsenka ustoichivosti resheniya volnovogo uravneniya s dannymi Koshi na vremenipodobnoi poverkhnosti”, Sib. mat. zhurn., 46:5 (2005), 1152–1162 | MR | Zbl
[11] Romanov V. G., “Otsenka ustoichivosti v zadache o prodolzhenii resheniya volnovogo uravneniya s vremenipodobnoi tsilindricheskoi poverkhnosti”, Dokl. AN, 404:2 (2005), 162–165 | MR | Zbl
[12] Romanov V. G., “Karlemanovskie otsenki dlya giperbolicheskogo uravneniya”, Dokl. AN, 405:6 (2005), 730–734 | MR | Zbl
[13] Romanov V. G., “Karlemanovskie otsenki dlya giperbolicheskogo uravneniya vtorogo poryadka”, Sib. mat. zhurn., 47:1 (2006), 169–187 | MR | Zbl
[14] Romanov V. G., “Otsenka ustoichivosti resheniya zadachi dlya uravnenii elektrodinamiki s dannymi na vremenipodobnoi poverkhnosti”, Dokl. AN, 411:1 (2006), 16–19 | MR | Zbl
[15] Romanov V. G., “Otsenki resheniya odnogo differentsialnogo neravenstva, svyazannogo s giperbolicheskim operatorom vtorogo poryadka i dannymi Koshi na vremenipodobnoi poverkhnosti”, Dokl. AN, 406:3 (2006), 314–316 | MR | Zbl
[16] Romanov V. G., “Otsenka ustoichivosti resheniya uravnenii uprugosti s dannymi na vremenipodobnoi poverkhnosti”, Dokl. AN, 410:2 (2006), 161–163 | MR | Zbl
[17] Shishatskii S. P., “Apriornye otsenki v zadache o prodolzhenii volnovogo polya s tsilindricheskoi vremenipodobnoi poverkhnosti”, Dokl. AN SSSR, 213:1 (1973), 49–50 | MR | Zbl
[18] Triggiani R., Yao P. F., “Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot”, Appl. Math. Optim., 46:2–3 (2002), 334–375 | MR
[19] Tataru D., “Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem”, Commun. Partial Diff. Equations, 20:5–6 (1995), 855–884 | MR | Zbl
[20] Tataru D., “Carleman estimates and unique continuation for solutions to boundary value problems”, J. Math. Pure Appl., 75 (1996), 367–408 | MR | Zbl
[21] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR