Generalized Cole--Hopf transformation
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 18-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of generalization of the Cole–Hopf transformation for parabolic equations with a source, we obtain some new representations of solutions and coefficients of nonlinear parabolic equations of mathematical physics which in fact are differential-algebraic identities. These representations can be used in studying the multidimensional direct and inverse problems.
Mots-clés : Cole–Hopf transformation
Keywords: nonlinear parabolic equation.
@article{SJIM_2018_21_3_a1,
     author = {Yu. E. Anikonov and M. V. Neshchadim},
     title = {Generalized {Cole--Hopf} transformation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {18--25},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a1/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - M. V. Neshchadim
TI  - Generalized Cole--Hopf transformation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 18
EP  - 25
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a1/
LA  - ru
ID  - SJIM_2018_21_3_a1
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A M. V. Neshchadim
%T Generalized Cole--Hopf transformation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 18-25
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a1/
%G ru
%F SJIM_2018_21_3_a1
Yu. E. Anikonov; M. V. Neshchadim. Generalized Cole--Hopf transformation. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 18-25. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a1/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980

[2] Matveev V. B., “Darboux transformation and explicit solutions of the Kadomtcev–Petviaschvily equation, depending on functional parameters”, Lett. Math. Phys., 3:3 (1979), 213–216 | DOI | MR | Zbl

[3] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1978

[4] Svinolupov S. I., “Ob analogakhuravneniya Byurgersa proizvolnogo poryadka”, Teor. mekhanika i fizika, 65:2 (1985), 303–307 | MR | Zbl

[5] Zhuravlev V. M., Nikitin A. V., “Nelineinye uravneniya, svyazannye s uravneniyami teploprovodnosti i d'Alambera s pomoschyu podstanovok tipa Koula–Khopfa”, Nelineinyi mir, 5:9 (2007), 603–611

[6] Zhuravlev V. M., “Metod obobschennykh podstanovok Koula–Khopfa i novye primery linearizuemykh nelineinykh evolyutsionnykh uravnenii”, Teor. mekhanika i fizika, 158:1 (2009), 58–71 | MR | Zbl

[7] Zhuravlev V. M., Obrubov K. S., “Metod obobschennykh podstanovok Koula–Khopfa v teorii konechnomernykh nelineinykh dinamicheskikh sistem”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2011, no. 1(22), 83–89 | DOI

[8] Petrovskii S. V., “Tochnye resheniya uravneniya Byurgersa s istochnikom”, Zhurn. tekhn. fiziki, 69:8 (1999), 10–14

[9] Sobolev S. L., “Funktsionalno-invarianatnye resheniya volnovogo uravneniya”, Tr. Fiz.-mat. in-ta im. Steklova, 5, 1934, 259–264 | Zbl

[10] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi mat. nauk, 1938, no. 5, 5–41

[11] Lavrentev M. M., Reznitskaya K. G., Yakhno V. G., Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka, Novosibirsk, 1982

[12] Miura R. M., “Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys., 9 (1968), 1202–1204 | DOI | MR | Zbl

[13] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1982

[14] Gabov S. A., Sveshnikov A. G., Zadachi dinamiki stratifitsirovannykh zhidkostei, Nauka, M., 1986

[15] Anikonov Yu. E., Nekotorye metody issledovaniya mnogomernykh obratnykh zadach dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1978

[16] Anikonov Yu. E., Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht, 1997 | MR | Zbl

[17] Anikonov Yu. E., “Konstruktivnye metody issledovaniya obratnykh zadach dlya evolyutsionnykh uravnenii”, Sib. zhurn. industr. matematiki, 11:2 (2008), 3–20 | MR | Zbl

[18] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. I”, Sib. zhurn. industr. matematiki, 14:1 (2011), 27–39 | MR | Zbl

[19] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. II”, Sib. zhurn. industr. matematiki, 14:2 (2011), 28–33 | MR | Zbl

[20] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya parabolicheskikh uravnenii”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 11:3 (2011), 20–35 | Zbl

[21] Anikonov Yu. E., Ayupova N. B., “Preobrazovanie Khopfa–Koula i mnogomernye predstavleniya reshenii evolyutsionnykh uravnenii”, Sib. zhurn. industr. matematiki, 17:4 (2014), 31–37 | MR | Zbl