Properties of solutions for the problem of a~joint slow motion of a~liquid and a~binary mixture in a~two-dimensional channel
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is a conjugate boundary value problemdescribing a joint motion of a binary mixture and a viscous heat-conducting liquid in a two-dimensional channel, where the horizontal component of the velocity vector depends linearly on one of the coordinates. The problemis nonlinear and inverse because the systems of equations contain the unknown time functions – the pressure gradients in the layers. In the case of small Marangoni numbers (the so-called creeping flow) the problem becomes linear. For its solutions the two different integral identities are valid which allow us to obtain a priori estimates of the solution in the uniform metric. It is proved that if the temperature on the channel walls stabilizes with time then, as time increases, the solution of the nonstationary problem tends to a stationary solution by an exponential law.
Keywords: conjugate problem, inverse problem, a priori estimates, thermocapillarity, asymptotic behavior.
Mots-clés : surface tension
@article{SJIM_2018_21_3_a0,
     author = {V. K. Andreev and M. V. Efimova},
     title = {Properties of solutions for the problem of a~joint slow motion of a~liquid and a~binary mixture in a~two-dimensional channel},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a0/}
}
TY  - JOUR
AU  - V. K. Andreev
AU  - M. V. Efimova
TI  - Properties of solutions for the problem of a~joint slow motion of a~liquid and a~binary mixture in a~two-dimensional channel
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 3
EP  - 17
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a0/
LA  - ru
ID  - SJIM_2018_21_3_a0
ER  - 
%0 Journal Article
%A V. K. Andreev
%A M. V. Efimova
%T Properties of solutions for the problem of a~joint slow motion of a~liquid and a~binary mixture in a~two-dimensional channel
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 3-17
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a0/
%G ru
%F SJIM_2018_21_3_a0
V. K. Andreev; M. V. Efimova. Properties of solutions for the problem of a~joint slow motion of a~liquid and a~binary mixture in a~two-dimensional channel. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 3-17. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a0/