An economical algorithm for numerical solution of the problem of identifying the right-hand side of the Poisson equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 101-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose two economical algorithms for numerical solution of the problem of identifying the right-hand side of the Poisson equation from information on the solution on the boundary of the domain. Both algorithms are based on the method of separation of variables. The method is presented on a discrete level. We use the nonuniform grids along one of the coordinates. There are possible applications for operators with variable coefficients of a special kind.
Keywords: inverse problem, identification of the right-hand side, economical algorithm, difference scheme, separation of variables.
Mots-clés : Poisson equation, elliptic equation
@article{SJIM_2018_21_2_a8,
     author = {S. B. Sorokin},
     title = {An economical algorithm for numerical solution of the problem of identifying the right-hand side of the {Poisson} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - An economical algorithm for numerical solution of the problem of identifying the right-hand side of the Poisson equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 101
EP  - 107
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/
LA  - ru
ID  - SJIM_2018_21_2_a8
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T An economical algorithm for numerical solution of the problem of identifying the right-hand side of the Poisson equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 101-107
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/
%G ru
%F SJIM_2018_21_2_a8
S. B. Sorokin. An economical algorithm for numerical solution of the problem of identifying the right-hand side of the Poisson equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 101-107. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka 1979, M. | MR

[2] Vabischevich P. N., “Obratnaya zadacha vosstanovleniya pravoi chasti ellipticheskogo uravneniya i ee chislennoe reshenie”, Differents. uravneniya, 21:2 (1985), 277–284 | MR | Zbl

[3] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, izd. LKI, M., 2009

[4] Karchevsky A. L., “Reformulation of an inverse problem statement that reduces computational costs”, Eurasian J. Math. Comp. Appl., 1:2 (2013), 4–20 | MR

[5] Solovev V. V., “Obratnye zadachi opredeleniya istochnika i koeffitsienta v ellipticheskom uravnenii v pryamougolnike”, Zhurn. vychisl. matematiki i mat. fiziki, 47:8 (2007), 1365–1377 | MR

[6] Solovev V. V., Obratnye zadachi dlya uravnenii ellipticheskogo i parabolicheskogo tipov v prostranstvakh Geldera, Dis. $\dots$ dokt. fiz.-mat. nauk: 01.01.02, M., 2014

[7] Pavlov G. A., Abakumova N. A., “Odna obratnaya zadacha dlya uravneniya Puassona”, Matematika i informatsionnye tekhnologii v sovremennom mire, Tr. Mezhdunar. zaochn. nauchno-prakt. konf. (Novosibirsk, 20 dekabrya 2011 g.), Sibirskaya assotsiatsiya konsultantov, Novosibirsk, 2011, 24–28

[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR

[9] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR