Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_2_a8, author = {S. B. Sorokin}, title = {An economical algorithm for numerical solution of the problem of identifying the right-hand side of the {Poisson} equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {101--107}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/} }
TY - JOUR AU - S. B. Sorokin TI - An economical algorithm for numerical solution of the problem of identifying the right-hand side of the Poisson equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 101 EP - 107 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/ LA - ru ID - SJIM_2018_21_2_a8 ER -
%0 Journal Article %A S. B. Sorokin %T An economical algorithm for numerical solution of the problem of identifying the right-hand side of the Poisson equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 101-107 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/ %G ru %F SJIM_2018_21_2_a8
S. B. Sorokin. An economical algorithm for numerical solution of the problem of identifying the right-hand side of the Poisson equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 101-107. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a8/
[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka 1979, M. | MR
[2] Vabischevich P. N., “Obratnaya zadacha vosstanovleniya pravoi chasti ellipticheskogo uravneniya i ee chislennoe reshenie”, Differents. uravneniya, 21:2 (1985), 277–284 | MR | Zbl
[3] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, izd. LKI, M., 2009
[4] Karchevsky A. L., “Reformulation of an inverse problem statement that reduces computational costs”, Eurasian J. Math. Comp. Appl., 1:2 (2013), 4–20 | MR
[5] Solovev V. V., “Obratnye zadachi opredeleniya istochnika i koeffitsienta v ellipticheskom uravnenii v pryamougolnike”, Zhurn. vychisl. matematiki i mat. fiziki, 47:8 (2007), 1365–1377 | MR
[6] Solovev V. V., Obratnye zadachi dlya uravnenii ellipticheskogo i parabolicheskogo tipov v prostranstvakh Geldera, Dis. $\dots$ dokt. fiz.-mat. nauk: 01.01.02, M., 2014
[7] Pavlov G. A., Abakumova N. A., “Odna obratnaya zadacha dlya uravneniya Puassona”, Matematika i informatsionnye tekhnologii v sovremennom mire, Tr. Mezhdunar. zaochn. nauchno-prakt. konf. (Novosibirsk, 20 dekabrya 2011 g.), Sibirskaya assotsiatsiya konsultantov, Novosibirsk, 2011, 24–28
[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR
[9] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR