A contact problem for two plates of the same shape glued along one edge of a~crack
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 79-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the equilibrium problem for two plates with possible contact between them. It is assumed that the plates of the same shape and size are located in parallel without a gap. The clamped edge condition is stated on their lateral boundaries. The deflections of the plates satisfy the nonpenetration condition. There is a vertical crack in the lower layer. Along one edge of the crack, the plates are rigidly glued with each other. The three cases are studied in the paper: In the first case, the both layers are elastic, whereas in the second and third cases, the lower or upper layer respectively is rigid. To describe the displacement of the points of elastic plates, the Kirchhoff–Love model is used. Variational and differential formulations of the problems are derived and the unique solvability of the problems is established.
Keywords: Kirchhoff–Love plate, contact problem, crack with nonpenetration condition.
@article{SJIM_2018_21_2_a6,
     author = {E. V. Pyatkina},
     title = {A contact problem for two plates of the same shape glued along one edge of a~crack},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a6/}
}
TY  - JOUR
AU  - E. V. Pyatkina
TI  - A contact problem for two plates of the same shape glued along one edge of a~crack
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 79
EP  - 92
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a6/
LA  - ru
ID  - SJIM_2018_21_2_a6
ER  - 
%0 Journal Article
%A E. V. Pyatkina
%T A contact problem for two plates of the same shape glued along one edge of a~crack
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 79-92
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a6/
%G ru
%F SJIM_2018_21_2_a6
E. V. Pyatkina. A contact problem for two plates of the same shape glued along one edge of a~crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 79-92. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a6/

[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[2] Grigolyuk E. I., Tolkachev V. M., Kontaktnye zadachi teorii plastin i obolochek, Mashinostroenie, M., 1980

[3] Dmitriev S. N., “Analiticheskoe reshenie kontaktnoi zadachi ob uprugikh deformatsiyakh tonkoi plastiny, pomeschennoi v tsilindricheskuyu polost”, Nauka i obrazovanie, 2013, no. 1, 0517977 | MR

[4] Grishin V. I., Begeev T. K., “Koeffitsienty intensivnosti napryazhenii v plastine s tsentralnoi poperechnoi treschinoi, usilennoi nakladkami iz kompozitnogo materiala”, Mekhanika kompozitnykh materialov, 1986, no. 4, 696–700 | MR

[5] Savruk M. P., Kravets V. S., “Vliyanie podkreplyayuschikh nakladok na raspredelenie napryazhenii v plastinakh s treschinami”, Prikl. mekhanika, 29:3 (1993), 48–55 | MR

[6] Zemlyanova A. Yu., Silvestrov V. V., “Zadacha o podkreplenii plastiny s vyrezom pri pomoschi dvumernoi nakladki”, Prikl. matematika i mekhanika, 71:1 (2007), 43–55 | MR | Zbl

[7] Vasileva Yu. O., Silvestrov V. V., “Zadacha o mezhfaznoi treschine s zhestkoi nakladkoi na chasti ee berega”, Prikl. matematika i mekhanika, 2011, no. 6, 1017–1037 | Zbl

[8] Pyatkina E. V., “O zadache upravleniya dlya dvusloinogo uprugogo tela s treschinoi”, Sib. zhurn. chistoi i prikl. matematiki, 16:4 (2016), 103–112

[9] Rudoy E. M., Kazarinov N. A., Slesarenko V. Y., “Numerical simulation of equilibrium of an elastic two-layer structure with a though crack”, J. Numer. Anal. Appl., 10:1, 63–73 | DOI | MR

[10] Dimitrienko Yu. I., “Asimptoticheskaya teoriya mnogosloinykh tonkikh plastin”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2012, no. 3, 86–99

[11] Dimitrienko Yu. I., Gubareva E. A., Yurin Yu. V., “Variatsionnye uravneniya asimptoticheskoi teorii mnogosloinykh tonkikh plastin”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2015, no. 4, 67–87

[12] Zhilin P. A., Prikladnaya mekhanika. Osnovy teorii obolochek, Izd-vo Politekh. gos. un-ta, SPb., 2006

[13] Freddi L., Roubíček T., Zanini C., “Quasistatic delamination of sandwich-like Kirchhoff–Love plates”, J. Elastisity, 113:2 (2013), 219–250 | DOI | MR | Zbl

[14] Khludnev A. M., “Zadacha o kontakte dvukh uprugikh plastin”, Prikl. matematika i mekhanika, 47:1 (1983), 140–146 | MR

[15] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT-Press, Boston–Southampton, 2000

[16] Khludnev A. M., “O kontakte dvukh plastin, odna iz kotorykh soderzhit treschinu”, Prikl. matematika i mekhanika, 61:5 (1997), 882–894 | MR | Zbl

[17] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, Prikl. mekhanika i tekhn. fizika, 49:4 (2008), 533–567

[18] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, 9:4 (2009), 51–64 | Zbl

[19] Rotanova T. A., “O postanovkakh i razreshimosti zadach o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR | Zbl