Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_2_a6, author = {E. V. Pyatkina}, title = {A contact problem for two plates of the same shape glued along one edge of a~crack}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {79--92}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a6/} }
TY - JOUR AU - E. V. Pyatkina TI - A contact problem for two plates of the same shape glued along one edge of a~crack JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 79 EP - 92 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a6/ LA - ru ID - SJIM_2018_21_2_a6 ER -
E. V. Pyatkina. A contact problem for two plates of the same shape glued along one edge of a~crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 79-92. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a6/
[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[2] Grigolyuk E. I., Tolkachev V. M., Kontaktnye zadachi teorii plastin i obolochek, Mashinostroenie, M., 1980
[3] Dmitriev S. N., “Analiticheskoe reshenie kontaktnoi zadachi ob uprugikh deformatsiyakh tonkoi plastiny, pomeschennoi v tsilindricheskuyu polost”, Nauka i obrazovanie, 2013, no. 1, 0517977 | MR
[4] Grishin V. I., Begeev T. K., “Koeffitsienty intensivnosti napryazhenii v plastine s tsentralnoi poperechnoi treschinoi, usilennoi nakladkami iz kompozitnogo materiala”, Mekhanika kompozitnykh materialov, 1986, no. 4, 696–700 | MR
[5] Savruk M. P., Kravets V. S., “Vliyanie podkreplyayuschikh nakladok na raspredelenie napryazhenii v plastinakh s treschinami”, Prikl. mekhanika, 29:3 (1993), 48–55 | MR
[6] Zemlyanova A. Yu., Silvestrov V. V., “Zadacha o podkreplenii plastiny s vyrezom pri pomoschi dvumernoi nakladki”, Prikl. matematika i mekhanika, 71:1 (2007), 43–55 | MR | Zbl
[7] Vasileva Yu. O., Silvestrov V. V., “Zadacha o mezhfaznoi treschine s zhestkoi nakladkoi na chasti ee berega”, Prikl. matematika i mekhanika, 2011, no. 6, 1017–1037 | Zbl
[8] Pyatkina E. V., “O zadache upravleniya dlya dvusloinogo uprugogo tela s treschinoi”, Sib. zhurn. chistoi i prikl. matematiki, 16:4 (2016), 103–112
[9] Rudoy E. M., Kazarinov N. A., Slesarenko V. Y., “Numerical simulation of equilibrium of an elastic two-layer structure with a though crack”, J. Numer. Anal. Appl., 10:1, 63–73 | DOI | MR
[10] Dimitrienko Yu. I., “Asimptoticheskaya teoriya mnogosloinykh tonkikh plastin”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2012, no. 3, 86–99
[11] Dimitrienko Yu. I., Gubareva E. A., Yurin Yu. V., “Variatsionnye uravneniya asimptoticheskoi teorii mnogosloinykh tonkikh plastin”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2015, no. 4, 67–87
[12] Zhilin P. A., Prikladnaya mekhanika. Osnovy teorii obolochek, Izd-vo Politekh. gos. un-ta, SPb., 2006
[13] Freddi L., Roubíček T., Zanini C., “Quasistatic delamination of sandwich-like Kirchhoff–Love plates”, J. Elastisity, 113:2 (2013), 219–250 | DOI | MR | Zbl
[14] Khludnev A. M., “Zadacha o kontakte dvukh uprugikh plastin”, Prikl. matematika i mekhanika, 47:1 (1983), 140–146 | MR
[15] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT-Press, Boston–Southampton, 2000
[16] Khludnev A. M., “O kontakte dvukh plastin, odna iz kotorykh soderzhit treschinu”, Prikl. matematika i mekhanika, 61:5 (1997), 882–894 | MR | Zbl
[17] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, Prikl. mekhanika i tekhn. fizika, 49:4 (2008), 533–567
[18] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, 9:4 (2009), 51–64 | Zbl
[19] Rotanova T. A., “O postanovkakh i razreshimosti zadach o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR | Zbl