On the analytic solutions of a~special boundary value problem for a~nonlinear heat equation in polar coordinates
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 56-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper addresses a nonlinear heat equation (the porous medium equation) in the case of a power-law dependence of the heat conductivity coefficient on temperature. The equation is used for describing high-temperature processes, filtration of gases and fluids, groundwater infiltration, migration of biological populations, etc. The heat waves (waves of filtration) with a finite velocity of propagation over a cold background form an important class of solutions to the equation under consideration. A special boundary value problem having solutions of such type is studied. The boundary condition of the problem is given on a sufficiently smooth closed curve with variable geometry. The new theorem of existence and uniqueness of the analytic solution is proved.
Keywords: nonlinear heat equation, power series, existence and uniqueness theorem.
Mots-clés : convergence
@article{SJIM_2018_21_2_a4,
     author = {A. L. Kazakov and P. A. Kuznetsov},
     title = {On the analytic solutions of a~special boundary value problem for a~nonlinear heat equation in polar coordinates},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a4/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
TI  - On the analytic solutions of a~special boundary value problem for a~nonlinear heat equation in polar coordinates
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 56
EP  - 65
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a4/
LA  - ru
ID  - SJIM_2018_21_2_a4
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%T On the analytic solutions of a~special boundary value problem for a~nonlinear heat equation in polar coordinates
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 56-65
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a4/
%G ru
%F SJIM_2018_21_2_a4
A. L. Kazakov; P. A. Kuznetsov. On the analytic solutions of a~special boundary value problem for a~nonlinear heat equation in polar coordinates. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 56-65. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a4/

[1] Sidorov A. F., Izbrannye trudy. Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[2] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966

[3] Barenblatt G. I., Entov V. M., Ryzhik V. M., Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972

[4] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR

[5] Murray J., Mathematical Biology, v. I, Interdisciplinary Applied Mathematics, 17, An Introduction, Springer, N.Y., 2002 | MR | Zbl

[6] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press 2007, Oxford | MR

[7] Rubina L. I., Ulyanov O. N., “Ob odnom metode resheniya uravneniya nelineinoi teploprovodnosti”, Sib. mat. zhurn., 53:5 (2012), 1091–1101 | MR | Zbl

[8] Filimonov M. Yu., Korzunin L. G., Sidorov A. F., “Approximate methods for solving nonlinear initial boundary-value problems based on special construction of series”, Rus. J. Numer. Anal. Math. Modelling, 8:2 (1993), 101–125 | DOI | MR | Zbl

[9] Vaganova N. A., “Postroenie novykh klassov reshenii nelineinogo uravneniya filtratsii s pomoschyu spetsialnykh soglasovannykh ryadov”, Tr. In- ta matematiki i mekhaniki UrO RAN, 9, no. 2, 2003, 10–20 | MR | Zbl

[10] Kazakov A. L., Lempert A. A., “O suschestvovanii i edinstvennosti resheniya kraevoi zadachi dlya parabolicheskogo uravneniya nestatsionarnoi filtratsii”, Prikl. mekhanika i tekhn. fizika, 54:2 (2013), 97–105 | MR | Zbl

[11] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20, no. 1, 2014, 119–129 | MR

[12] Kazakov A. L., Kuznetsov P. A., “Ob odnoi kraevoi zadache dlya nelineinogo uravneniya teploprovodnosti v sluchae dvukh prostranstvennykh peremennykh”, Sib. zhurn. industr. matematiki, 17:1 (2014), 46–54 | MR | Zbl

[13] Almeida R. M. P., Antontsev S. N., Duque J. C. M., “Discrete solutions for the porous medium equation with absorption and variable exponents”, Math. Comput. Simulation, 137 (2017), 109–129 | DOI | MR

[14] Vazquez J. L., de Pablo A., Quiros F., Rodriguez A., “Classical solutions and higher regularity for nonlinear fractional diffusion equations”, J. Eur. Math. Soc., 19:7 (2017), 1949–1975 | DOI | MR | Zbl

[15] Demidenko G. V., Upsenskii S. V., Partial Differential Equations And Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York–Basel, 2003 | MR | Zbl

[16] Kazakov A. L., Lempert A. A., “On the construction of heat wave in symmetric case”, J. Phys.: Conf. Ser., 722 (2016), 012016 | DOI

[17] Petrovskii I. G., Lektsii ob uravneniyakh chastnymi proizvodnymi, Fizmatgiz, M., 1961 | MR