Simulation of the spatial action of a~medium on a~body of conical form
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 122-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of the spatial action of a medium on the axisymmetric rigid body whose external surface has a part that is a circular cone. We present a complete system of equations of motion under the quasistationary conditions. The dynamical part forms an independent system of the sixth order in which the independent subsystems of lower order are distinguished. We study the problem of stability with respect to the part of variables of the key regim – the spatial rectilinear translational deceleration of the body. For a particular class of bodies, we show the inertial mass characteristics under which the key regime is stable. For a plane analog of the problem, we obtain a family of phase portraits in the space of quasivelocities.
Keywords: rigid body, resisting medium, stability
Mots-clés : spatial motion, phase portrait.
@article{SJIM_2018_21_2_a10,
     author = {M. V. Shamolin},
     title = {Simulation of the spatial action of a~medium on a~body of conical form},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {122--130},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a10/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Simulation of the spatial action of a~medium on a~body of conical form
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 122
EP  - 130
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a10/
LA  - ru
ID  - SJIM_2018_21_2_a10
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Simulation of the spatial action of a~medium on a~body of conical form
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 122-130
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a10/
%G ru
%F SJIM_2018_21_2_a10
M. V. Shamolin. Simulation of the spatial action of a~medium on a~body of conical form. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 122-130. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a10/

[1] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, 2, Nauka, M., 1983–1984 | MR

[2] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[3] Tabachnikov V. G., “Statsionarnye kharakteristiki krylev na malykh skorostyakh vo vsem diapazone uglov ataki”, Trudy TsAGI, 1621, 1974, 18–24

[4] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, Izd-vo MGU, M., 1986

[5] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[6] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. i prikl. matematika, 14:3 (2008), 3–237 | MR | Zbl

[7] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[8] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[9] Andreev A. V., Shamolin M. V., “Modelirovanie vozdeistviya sredy na telo konicheskoi formy i semeistva fazovykh portretov v prostranstve kvaziskorostei”, Prikl. mekhanika i tekhn. fizika, 56:4 (2015), 85–91 | Zbl

[10] Shamolin M. V., “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, Proc. Appl. Math. Mech., 9 (2009), 139–140 | DOI | MR

[11] Shamolin M. V., “K zadache o svobodnom tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Prikl. mekhanika i tekhn. fizika, 57:4 (2016), 43–56 | Zbl

[12] Shamolin M. V., “K zadache o svobodnom tormozhenii tverdogo tela s perednim konusom v soprotivlyayuscheisya srede”, Mat. modelirovanie, 28:9 (2016), 3–23 | Zbl