Optimal resource consumption control with interval restrictions
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some method is developed for calculating the optimal resource consumption control with interval restrictions on the components of the control vector. The approach is based on the sequential adjustment of the values of a quasioptimal control actions up to their limit values. The connection is found between the deviations of the initial conditions of the adjoint system and the deviations of the values of the quasioptimal control from the limit values. The rule for specifying the initial approximation is given, and the specific features of the rule are noted. An iterative algorithm is developed, and an example is given.
Keywords: optimal control, resource consumption, interval restrictions, transfer time, switching times, adjoint system, iterative process, phase trajectory.
@article{SJIM_2018_21_2_a0,
     author = {V. M. Aleksandrov},
     title = {Optimal resource consumption control with interval restrictions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a0/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Optimal resource consumption control with interval restrictions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 3
EP  - 16
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a0/
LA  - ru
ID  - SJIM_2018_21_2_a0
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Optimal resource consumption control with interval restrictions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 3-16
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a0/
%G ru
%F SJIM_2018_21_2_a0
V. M. Aleksandrov. Optimal resource consumption control with interval restrictions. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a0/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | MR

[2] Agrachev A. A., Gamkrelidze R. V., “Geometriya printsipa maksimuma”, Trudy MIAN, 273, 2011, 5–27 | MR | Zbl

[3] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie i nablyudenie v realnom vremeni”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 3, 90–111 | MR | Zbl

[4] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, Izd-vo MGU, M., 2004

[5] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43 | MR | Zbl

[6] Milyutin A. A., Printsip maksimuma v obschei zadache optimalnogo upravleniya, Fizmatlit, M., 2001

[7] Kalmykov S. A., Shokin Yu. I., Yuldashev Z. Kh., Metody intervalnogo analiza, Nauka, Novosibirsk, 1986 | MR

[8] Polyak B. T., Nazin S. A., “Otsenivanie parametrov v lineinykh mnogomernykh sistemakh s intervalnoi neopredelennostyu”, Problemy upravleniya i informatiki, 2006, no. 1–2, 103–115

[9] Aschepkov L. T., “Lineinye intervalnye uravneniya s simmetrichnymi mnozhestvami reshenii”, Zhurn. vychisl. matematiki i mat. fiziki, 48:4 (2008), 562–569 | MR | Zbl

[10] Sharyi S. P., “Razreshimost intervalnykh lineinykh uravnenii i analiz dannykh s neopredelennostyami”, Avtomatika i telemekhanika, 2012, no. 2, 111–125

[11] Gusev Yu. M., Efanov V. N., Krymskii V. G., Rutkovskii V. Yu., “Analiz i sintez lineinykh intervalnykh dinamicheskikh sistem (sostoyanie problemy). I”, Izv. RAN. Tekhn. kibernetika, 1991, no. 1, 3–23 | Zbl

[12] Aleksandrov V. M., “Optimalnoe upravlenie lineinymi sistemami s intervalnymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 55:5 (2015), 758–775 | DOI | MR | Zbl

[13] Aleksandrov V. M., “Reshenie zadach optimalnogo upravleniya na osnove metoda kvazioptimalnogo upravleniya”, Modeli i metody optimizatsii, Tr. In-ta matematiki SO AN SSSR, 10, 1988, 18–54 | Zbl

[14] Aleksandrov V. M., “Priblizhennoe reshenie zadach optimalnogo upravleniya”, Problemy kibernetiki, 41, 1984, 143–206 | Zbl

[15] Aleksandrov V. M., “Optimalnoe i kvazioptimalnoe po raskhodu resursov upravleniya dinamicheskimi sistemami”, Sib. elektron. mat. izvestiya, 7 (2010), 166–249 http://semr.math.nsc.ru/v7/p166-249.pdf | Zbl

[16] Aleksandrov V. M., “Vychislenie optimalnogo upravleniya v realnom vremeni”, Zhurn. vychisl. matematiki i mat. fiziki, 52:10 (2012), 1778–1800 | MR | Zbl

[17] Aleksandrov V. M., “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Sib. zhurn. vychisl. matematiki, 10:1 (2007), 1–28 | Zbl

[18] Aleksandrov V. M., “Optimalnoe po raskhodu resursov upravlenie lineinymi sistemami”, Zhurn. vychisl. matematiki i mat. fiziki, 51:4 (2011), 562–579 | MR | Zbl