Application in aerohydrodynamics of the solution of an inverse boundary value problem for analytic functions
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 80-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a modified inverse boundary value problem of aerohydrodynamics in which it is required to find the shape of an airfoil streamlined by a potential flow of an incompressible nonviscous fluid, when the distribution of the velocity potential on one section of the airfoil is given as a function of the abscissa, while, on other sections of the airfoil, as a function of the ordinate of the point. The velocity of the undisturbed flow streamlining the sought-for airfoil is determined in the process of solving the problem. It is shown that, under rather general conditions on the initially set functions, the sought-for contour is closed unlike the inverse problem in the case when, on the unknown contour, the velocity distribution is given as a function of the arc abscissa of the contour point. We also consider the case when, on the entire desired contour, the distribution of the velocity potential is given as a function of one and the same Cartesian coordinate of the contour point.
Keywords: inverse boundary value problems of aerodynamics, analytic function, conformal mapping
Mots-clés : airfoil.
@article{SJIM_2018_21_1_a7,
     author = {R. B. Salimov},
     title = {Application in aerohydrodynamics of the solution of an inverse boundary value problem for analytic functions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {80--89},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a7/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - Application in aerohydrodynamics of the solution of an inverse boundary value problem for analytic functions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 80
EP  - 89
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a7/
LA  - ru
ID  - SJIM_2018_21_1_a7
ER  - 
%0 Journal Article
%A R. B. Salimov
%T Application in aerohydrodynamics of the solution of an inverse boundary value problem for analytic functions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 80-89
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a7/
%G ru
%F SJIM_2018_21_1_a7
R. B. Salimov. Application in aerohydrodynamics of the solution of an inverse boundary value problem for analytic functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 80-89. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a7/

[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo KazGU, Kazan, 1965 | MR

[2] Elizarov A. M., Ilinskii N. B., Potashev A. V., Obratnye kraevye zadachi aerogidrodinamiki, Nauka, M., 1994 | MR

[3] Abubakirov N. R., Salimov R. B., Shabalin P. L., “Vneshnyaya obratnaya kraevaya zadacha pri kombinirovanii dvukh parametrov iz dekartovykh koordinat i polyarnogo ugla”, Izv. vuzov. Ser. Matematika, 2001, no. 10, 3–10 | MR | Zbl

[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[5] Salimov R. B., “K vychisleniyu singulyarnykh integralov s yadrom Gilberta”, Izv. vuzov. Ser. Matematika, 1970, no. 12, 93–96 | MR | Zbl

[6] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[7] Salimov R. B., “Nekotorye svoistva analiticheskikh v kruge funktsii i ikh primeneniya k issledovaniyu povedeniya singulyarnykh integralov”, Izv. vuzov. Ser. Matematika, 2012, no. 3, 42–50 | MR