First integrals and periodic solutions of a~system with power nonlinearities
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is some system of ordinary differential equations with power nonlinearities. These systems are widely used in mathematical biology and chemical kinetics, and can also occur by reduction of more sophisticated models. We formulate conditions on the system parameters which guarantee the existence of first integrals defined by the combinations of power and logarithmic functions of the phase variables. Using the first integrals, we construct periodic solutions for the three-variable systems. A few examples are given illustrating the results.
Keywords: system of ordinary differential equations, first integral, periodic solution, elliptic Jacobi function.
@article{SJIM_2018_21_1_a4,
     author = {A. A. Kosov and E. I. Semenov},
     title = {First integrals and periodic solutions of a~system with power nonlinearities},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a4/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semenov
TI  - First integrals and periodic solutions of a~system with power nonlinearities
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 47
EP  - 60
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a4/
LA  - ru
ID  - SJIM_2018_21_1_a4
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semenov
%T First integrals and periodic solutions of a~system with power nonlinearities
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 47-60
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a4/
%G ru
%F SJIM_2018_21_1_a4
A. A. Kosov; E. I. Semenov. First integrals and periodic solutions of a~system with power nonlinearities. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 47-60. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a4/

[1] Kosov A. A., “Ob ustoichivosti slozhnykh sistem po nelineinomu priblizheniyu”, Differents. uravneniya, 33:10 (1997), 1432–1434 | MR

[2] Vassilyev S. N., Kosov A. A., Malikov A. I., “Stability analysis of nonlinear switched systems via reduction method”, Proc. 18 IFAC World Congress (Milano, Italy, August 28 – September 2, 2011), Milano, 2011, 5718–5723

[3] Rudykh G. A., Semenov E. I., “Postroenie tochnykh reshenii mnogomernogo kvazilineinogo uravneniya teploprovodnosti”, Zhurn. vychisl. matematiki i mat. fiziki, 33:8 (1993), 1228–1239 | MR | Zbl

[4] Rudykh G. A., Semenov E. I., “Tochnye neotritsatelnye resheniya mnogomernogo uravneniya nelineinoi diffuzii”, Sib. mat. zhurn., 39:5 (1998), 1131–1140 | MR | Zbl

[5] Meirmanov A. M., Pukhnachov V. V., Shmarev S. I., Evolution Equations and Lagrangian Coordinates, Walter de Gruyter, Berlin–N.Y., 1997 | MR

[6] Polyanin A. D., Kutepov A. M., Vyazmin A. V., Kazenin D. A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Taylor Francis, London–N.Y., 2002

[7] Galaktionov V. A., Svirshchevskii S. R., Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman Hall/CRC Press, Boca Raton, 2006 | MR

[8] Svirezhev Yu. M., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[9] Murray J. D., Mathematical biology, v. I, An Introduction, Springer Verl., Berlin, 2002 | MR

[10] Slinko M. G., Zelenyak T. I., Akramov T. A., Lavrentev M. M. (ml.), Sheplev V. S., “Nelineinaya dinamika kataliticheskikh reaktsii i protsessov (obzor)”, Mat. modelirovanie, 9:12 (1997), 87–109 | MR | Zbl

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. A., Integraly i ryady, Nauka, M., 1981 | MR

[12] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR