Wave properties of a~double one-dimensional periodic sheet grating
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 35-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the double one-dimensional periodic sheet gratings always have waveguide properties for acoustic waves. In general, there are two types of pass bands: i.e., the connected sets of frequencies for which there exist harmonic acoustic traveling waves propagating in the direction of periodicity and localized in the neighborhood of the grating. Using numerical-analytical methods, we describe the dispersion relations for these waves, pass bands, and their dependence on the geometric parameters of the problem. The phenomenon is discovered of bifurcation of waveguide frequencies with respect to the parameter of the distance between the gratings that decreases from infinity. Some estimates are obtained for the parameters of frequency splitting or fusion in dependence on the distance between the simple blade gratings forming the double grating. We show that near a double sheet grating there always exist standing waves (in-phase oscillations in the neighboring fundamental cells of the group of translations) localized near the grating. By numerical-analytical methods, the dependences of the standing wave frequencies on the geometric parameters of the grating are determined. The mechanics is described of traveling and standing waves localized in the neighborhood of the double gratings.
Keywords: waves in periodic structures, one-dimensional periodic chain of obstacles.
@article{SJIM_2018_21_1_a3,
     author = {A. P. Konstantinov and S. V. Sukhinin},
     title = {Wave properties of a~double one-dimensional periodic sheet grating},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a3/}
}
TY  - JOUR
AU  - A. P. Konstantinov
AU  - S. V. Sukhinin
TI  - Wave properties of a~double one-dimensional periodic sheet grating
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 35
EP  - 46
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a3/
LA  - ru
ID  - SJIM_2018_21_1_a3
ER  - 
%0 Journal Article
%A A. P. Konstantinov
%A S. V. Sukhinin
%T Wave properties of a~double one-dimensional periodic sheet grating
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 35-46
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a3/
%G ru
%F SJIM_2018_21_1_a3
A. P. Konstantinov; S. V. Sukhinin. Wave properties of a~double one-dimensional periodic sheet grating. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a3/

[1] Sukhinin S. V., “Volnovodnoe, anomalnoe i shepchuschee svoistva periodicheskoi tsepochki prepyatstvii”, Sib. zhurn. industr. matematiki, 1:2 (1998), 175–198 | MR | Zbl

[2] Sukhinin S. V., Yurkovskii V. S., “Volnovody tsunami”, Sib. zhurn. industr. matematiki, 14:4 (2011), 111–124 | MR

[3] Koch W., “On the transmission of the sound waves through a blade row”, J. Sound Vibration, 18:2 (1971), 111–128 | DOI

[4] Sukhinin S. V., Bardakhanov V. B., “Eolovy tona plastiny v kanale”, Prikl. mekhanika i tekhn. fizika, 1998, no. 2, 69–77 | MR

[5] Sukhinin S. V., Volnovodnye, tsiklicheskie i anomalnye svoistva kolebanii okolo reshetki plastin, Preprint No 2-98, Institut gidrodinamiki im. M. A. Lavrenteva SO RAN, Novosibirsk, 1998, 32 pp.

[6] Sukhinin S. V., “Volnovodnoe i anomalnoe svoistva periodicheskoi nozhevoi reshetki”, Prikl. mekhanika i tekhn. fizika, 1998, no. 6, 46–56 | MR

[7] Garnier V. H., Epstein A. H., Greitzer E. M., “Rotating waves as a stall inception indication in axial compressors”, J. Turbomachinery, 113:2 (1991), 290–301 | DOI

[8] Konstantinov A. P., Sukhinin S. V., “Aeroakusticheskie rezonansnye yavleniya okolo tsepochki plastin tipa tandem v odnorodnom kanale. Bifurkatsiya chastot rezonansnykh kolebanii”, Tez. dokl. 4 Otkrytoi vseross. konf. po aeroakustike, M., 2015, 83–84

[9] Stoneman S., Hourigan K., Stokes A., Welsh M., “Resonant sound caused by flow past two plates in tandem in a duct”, J. Fluid Mech., 192 (1988), 455–484 | DOI

[10] Lyubarskii G. Ya., Teoriya grupp i ee primenenie v fizike, Fizmatgiz, M., 1958 | MR

[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982 | MR

[12] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[13] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974

[14] Sukhinin S. V., “Ob akusticheskikh i elektromagnitnykh kolebaniyakh okolo periodicheskoi reshetki”, Dinamika sploshnoi sredy, 51, 1981, 159–168

[15] Sukhinin S. V., “Obosnovanie modeli kolebanii gaza, obtekayuschego reshetku plastin”, Dinamika sploshnoi sredy, 56, 1982, 152–161 | MR