Vibrations of a~conductive string in a~nonstationary magnetic field with account taken of two nonlinear factors
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider vibrations of a conductive string with fixed ends in a magnetic field whose induction is a given function of time. Two nonlinear factors are taken into account simultaneously: the variation of the tension of the string depending on the displacement and the magnetostrictive effect. It is shown that, in the case of a periodically changing magnetic field, the nonlinear factors can compensate each other, and the problem is reduced to the study of linearized parametric vibrations.
Keywords: conductive string, nonstationary magnetic field, transverse magnetostriction, parametric vibrations.
@article{SJIM_2017_20_4_a7,
     author = {A. K. Tomilin and N. F. Kurilskaya},
     title = {Vibrations of a~conductive string in a~nonstationary magnetic field with account taken of two nonlinear factors},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a7/}
}
TY  - JOUR
AU  - A. K. Tomilin
AU  - N. F. Kurilskaya
TI  - Vibrations of a~conductive string in a~nonstationary magnetic field with account taken of two nonlinear factors
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 61
EP  - 66
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a7/
LA  - ru
ID  - SJIM_2017_20_4_a7
ER  - 
%0 Journal Article
%A A. K. Tomilin
%A N. F. Kurilskaya
%T Vibrations of a~conductive string in a~nonstationary magnetic field with account taken of two nonlinear factors
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 61-66
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a7/
%G ru
%F SJIM_2017_20_4_a7
A. K. Tomilin; N. F. Kurilskaya. Vibrations of a~conductive string in a~nonstationary magnetic field with account taken of two nonlinear factors. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 61-66. http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a7/

[1] Tomilin A. K., Kolebaniya elektromekhanicheskikh sistem s raspredelennymi parametrami, Izd-vo VKGTU, Ust-Kamenogorsk, 2004

[2] Kurilskaya N. F., “Kolebaniya provodyaschei struny v poperechnom magnitnom pole”, Materialy dokl. Mezhdunar. konf. “IV Okunevskie chteniya”, Izd-vo BGTU, SPb., 2005, 68–78

[3] Tomilin A. K., Baizakova G. A., Beregovaya O. A., Prokopenko E. V., Vibratsii kontinualnykh elektromekhanicheskikh sistem, Izd-vo VKGTU, Ust-Kamenogorsk, 2011

[4] Tomilin A. K., “Two-wave processes in the magnetic vibrations of a string”, Appl. Mech. Mat., 756 (2015), 476–481

[5] Tomilin A. K., Prokopenko E. V., “Non-destructive testing of rods using a potential component of a magnetic Field”, World J. Mech., 4:2 (2014), 37–43 | DOI

[6] Belov K. P., Magnitostriktsionnye yavleniya i ikh tekhnicheskie prilozheniya, Nauka, M., 1987

[7] Rozenblat M. A., “Magnitnye datchiki. Sostoyanie i tendentsii razvitiya”, Avtomatika i telemekhanika, 1995, no. 6, 3–55

[8] Levassort F., Pham Thi M., Hemery H., et. al., “Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers”, Ultrasonics, 44 (2006), 621–626 | DOI

[9] Biderman V. L., Teoriya mekhanicheskikh kolebanii, Vyssh. shkola, M., 1980

[10] Shmidt G., Parametricheskie kolebaniya, Mir, M., 1978 | MR

[11] Chechurin S. , L. Parametricheskie kolebaniya i ustoichivost periodicheskogo dvizheniya, Izd-vo LGU, L., 1983

[12] Levitskii N. I., Kolebaniya v mekhanizmakh, Nauka, M., 1988