Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_4_a5, author = {Yu. V. Klochkov and A. P. Nikolaev and O. V. Vakhnina and T. A. Kiseleva}, title = {The use of {Lagrange} multipliers in the triangular element of a~nonplanar shell under variable interpolation of displacements}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {44--54}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a5/} }
TY - JOUR AU - Yu. V. Klochkov AU - A. P. Nikolaev AU - O. V. Vakhnina AU - T. A. Kiseleva TI - The use of Lagrange multipliers in the triangular element of a~nonplanar shell under variable interpolation of displacements JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 44 EP - 54 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a5/ LA - ru ID - SJIM_2017_20_4_a5 ER -
%0 Journal Article %A Yu. V. Klochkov %A A. P. Nikolaev %A O. V. Vakhnina %A T. A. Kiseleva %T The use of Lagrange multipliers in the triangular element of a~nonplanar shell under variable interpolation of displacements %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 44-54 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a5/ %G ru %F SJIM_2017_20_4_a5
Yu. V. Klochkov; A. P. Nikolaev; O. V. Vakhnina; T. A. Kiseleva. The use of Lagrange multipliers in the triangular element of a~nonplanar shell under variable interpolation of displacements. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 44-54. http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a5/
[1] Novozhilov V. V., Teoriya tonkikh obolochek, Sudostroenie, L., 1962 | MR
[2] Nikolaev A. P., Klochkov Yu. V., Kiselev A. P., Gureeva N. A., Vektornaya interpolyatsiya polei peremeschenii v konechno-elementnykh raschetakh obolochek, izd. Volgograd. GAU, Volgograd, 2012
[3] Yakushev V. L., Nelineinye deformatsii i ustoichivost tonkikh obolochek, Nauka, M., 2004
[4] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Nauka, M., 1966 | MR
[5] Galimov K. Z., Paimushin V. N., Teoriya obolochek slozhnoi geometrii, Izd-vo Kazan. gos. un-ta, Kazan, 1985 | MR
[6] Kireev I. V., Nemirovskii Yu. V., “Konservativnyi chislennyi metod resheniya lineinykh kraevykh zadach statiki uprugikh obolochek vrascheniya”, Vychisl. mekhanika sploshnykh sred, 5:1 (2012), 85–99
[7] Sedov L. I., Mekhanika sploshnoi sredy, Nauka, M., 1976 | MR
[8] Golovanov A. I., Tyuleneva O. N., Shigabutdinov A. F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006
[9] Bate K.-Yu., Metody konechnykh elementov, Fizmatlit, M., 2010
[10] Postnov V. A., Kharkhurim I. Ya., Metod konechnykh elementov v raschetakh sudovykh konstruktsii, Sudostroenie, L., 1974
[11] Matvienko Yu. G., Chernyatin A. S., Razumovskii I. A., “Chislennyi analiz nesingulyarnykh sostavlyayuschikh trekhmernogo polya napryazhenii v vershine treschiny smeshannogo tipa”, Problemy mashinostroeniya i nadezhnosti mashin, 2013, no. 4, 40–48
[12] Savenkova M. I., Sheshenin S. V., Zakalyukina I. M., “Sravnenie rezultatov konechno-elementnogo analiza s rezultatami asimptoticheskogo metoda osredneniya v zadache uprugoplasticheskogo izgiba”, Vestnik MGSU, 2013, no. 8, 42–50
[13] Klochkov Yu. V., Nikolaev A. P., Kiselev A. P., “Osobennosti formirovaniya matritsy zhestkosti treugolnogo konechnogo elementa razmerom $54\times54$”, Izvestiya vuzov. Stroitelstvo, 1998, no. 2, 32–37
[14] Klochkov Yu. V., Nikolaev A. P., Kiseleva T. A., “Sravnenie skalyarnoi i vektornoi form metoda konechnykh elementov na primere ellipticheskogo tsilindra”, Mat. modelirovanie, 28:1 (2016), 65–77 | MR