Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_4_a2, author = {B. K. Buzdov}, title = {A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {22--28}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/} }
TY - JOUR AU - B. K. Buzdov TI - A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 22 EP - 28 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/ LA - ru ID - SJIM_2017_20_4_a2 ER -
%0 Journal Article %A B. K. Buzdov %T A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 22-28 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/ %G ru %F SJIM_2017_20_4_a2
B. K. Buzdov. A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 22-28. http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/
[1] Baissalov R., Sandison G. A., Donnelly B. J., Saliken J. C., McKinnon J. G., Muldrew K., Rewcastle J. C., “A semi-empirical treatment planning model for optimization of multiprobe cryosurgery”, Phys. Med. Biol., 45 (2000), 1085–1098 | DOI
[2] Rossi M. R., Rabin Y., “Experimental verification of numerical simulations of cryosurgery with application to computerized planning”, Phys. Med. Biol., 52 (2007), 4553–4567 | DOI
[3] Rabin Y., Shitzer A., “Numerical solution of the multidimensional freezing problem during cryosurgery”, ASME J. Biomech. Engrg., 120:1 (1998), 32–37 | DOI
[4] Zhmakin A. I., “Fizicheskie osnovy kriobiologii”, Uspekhi fiz. nauk, 178:3 (2008), 243–266 | DOI
[5] Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting human forearm”, J. Appl. Physiol., 1 (1948), 93–102
[6] Mitropolskii Yu. A., Berezovskii A. A., “Zadachi Stefana s predelnym statsionarnym sostoyaniem v spetselektrometallurgii, kriokhirurgii i fizike morya”, Mat. fizika i nelin. mekhanika, 1987, no. 7, 50–60
[7] Berezovskii A. A., Zhuraev K. O., Yurtin I. I., “Nestatsionarnye zadachi sfericheski-simmetrichnoi gipotermii biotkani”, Zadachi Stefana so svobodnymi granitsami, Kiev, 1990, 9–20; Препринт No 90.27, Ин-т математики АН УССР
[8] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurn. vychisl. matematiki i mat. fiziki, 5:5 (1965), 816–827 | MR | Zbl
[9] Budak B. M., Soloveva E. N., Uspenskii A. B., “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana”, Zhurn. vychisl. matematiki i mat. fiziki, 5:5 (1965), 828–840 | MR | Zbl
[10] Samarskii A. A., “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, Zhurn. vychisl. matematiki i mat. fiziki, 3:3 (1963), 431–466 | MR | Zbl
[11] Buzdov B. K., “Modelirovanie kriodestruktsii biologicheskoi tkani”, Mat. modelirovanie, 23:3 (2011), 27–37 | MR | Zbl
[12] Buzdov B. K., “Two-dimensional boundary problems of Stefan's type in cryomedicine”, Appl. Math. Sci., 8:137 (2014), 6841–6848