A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 22-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional boundary value problem of Stefan type with nonlinear heat sources of a special type and a variable heat transfer coefficient is posed and solved numerically. The model arises in cryosurgery when a living biological tissue is frozen by a cylindrical cryoinstrument located on its surface. The model takes into account the actually observed effect of spatial heat localization. Some results of computer calculations are given.
Keywords: mathematical models in cryosurgery, Stefan type problems, spatial heat localization.
@article{SJIM_2017_20_4_a2,
     author = {B. K. Buzdov},
     title = {A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {22--28},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/}
}
TY  - JOUR
AU  - B. K. Buzdov
TI  - A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 22
EP  - 28
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/
LA  - ru
ID  - SJIM_2017_20_4_a2
ER  - 
%0 Journal Article
%A B. K. Buzdov
%T A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 22-28
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/
%G ru
%F SJIM_2017_20_4_a2
B. K. Buzdov. A numerical study of a~two-dimensional mathematical model with a~variable heat transfer coefficient arising in cryosurgery. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 22-28. http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a2/

[1] Baissalov R., Sandison G. A., Donnelly B. J., Saliken J. C., McKinnon J. G., Muldrew K., Rewcastle J. C., “A semi-empirical treatment planning model for optimization of multiprobe cryosurgery”, Phys. Med. Biol., 45 (2000), 1085–1098 | DOI

[2] Rossi M. R., Rabin Y., “Experimental verification of numerical simulations of cryosurgery with application to computerized planning”, Phys. Med. Biol., 52 (2007), 4553–4567 | DOI

[3] Rabin Y., Shitzer A., “Numerical solution of the multidimensional freezing problem during cryosurgery”, ASME J. Biomech. Engrg., 120:1 (1998), 32–37 | DOI

[4] Zhmakin A. I., “Fizicheskie osnovy kriobiologii”, Uspekhi fiz. nauk, 178:3 (2008), 243–266 | DOI

[5] Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting human forearm”, J. Appl. Physiol., 1 (1948), 93–102

[6] Mitropolskii Yu. A., Berezovskii A. A., “Zadachi Stefana s predelnym statsionarnym sostoyaniem v spetselektrometallurgii, kriokhirurgii i fizike morya”, Mat. fizika i nelin. mekhanika, 1987, no. 7, 50–60

[7] Berezovskii A. A., Zhuraev K. O., Yurtin I. I., “Nestatsionarnye zadachi sfericheski-simmetrichnoi gipotermii biotkani”, Zadachi Stefana so svobodnymi granitsami, Kiev, 1990, 9–20; Препринт No 90.27, Ин-т математики АН УССР

[8] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurn. vychisl. matematiki i mat. fiziki, 5:5 (1965), 816–827 | MR | Zbl

[9] Budak B. M., Soloveva E. N., Uspenskii A. B., “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana”, Zhurn. vychisl. matematiki i mat. fiziki, 5:5 (1965), 828–840 | MR | Zbl

[10] Samarskii A. A., “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, Zhurn. vychisl. matematiki i mat. fiziki, 3:3 (1963), 431–466 | MR | Zbl

[11] Buzdov B. K., “Modelirovanie kriodestruktsii biologicheskoi tkani”, Mat. modelirovanie, 23:3 (2011), 27–37 | MR | Zbl

[12] Buzdov B. K., “Two-dimensional boundary problems of Stefan's type in cryomedicine”, Appl. Math. Sci., 8:137 (2014), 6841–6848