Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_3_a8, author = {V. N. Starovoitov and B. N. Starovoitova}, title = {Solvability of the unsteady problem of the motion of a~rigid body in a~flow of a~viscous incompressible fluid in a~pipe of arbitrary section}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {80--91}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a8/} }
TY - JOUR AU - V. N. Starovoitov AU - B. N. Starovoitova TI - Solvability of the unsteady problem of the motion of a~rigid body in a~flow of a~viscous incompressible fluid in a~pipe of arbitrary section JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 80 EP - 91 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a8/ LA - ru ID - SJIM_2017_20_3_a8 ER -
%0 Journal Article %A V. N. Starovoitov %A B. N. Starovoitova %T Solvability of the unsteady problem of the motion of a~rigid body in a~flow of a~viscous incompressible fluid in a~pipe of arbitrary section %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 80-91 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a8/ %G ru %F SJIM_2017_20_3_a8
V. N. Starovoitov; B. N. Starovoitova. Solvability of the unsteady problem of the motion of a~rigid body in a~flow of a~viscous incompressible fluid in a~pipe of arbitrary section. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 80-91. http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a8/
[1] Hoffmann K.-H., Starovoitov V. N., “On a motion of a solid body in a viscous fluid. Twodimensional case”, Adv. Math. Sci. Appl., 9:2 (1999), 633–648 | MR | Zbl
[2] Desjardins B., Esteban M. J., “Existence of weak solutions for the motion of rigid bodies in a viscous fluid”, Arch. Rational Mech. Anal., 146:1 (1999), 59–71 | DOI | MR | Zbl
[3] Hoffmann K.-H., Starovoitov V. N., “Zur Bewegung einer Kugel in einer zähen Flüssigkeit”, Doc. Math., 5 (2000), 15–21 | MR | Zbl
[4] Starovoitov V. N., Neregulyarnye zadachi gidrodinamiki, Dis. $\dots$ dokt. fiz.-mat. nauk, Novosibirsk, 2000
[5] Conca C., San Martín J. A., Tucsnak M., “Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid”, Comm. Partial Differential Equations, 25:5–6 (2000), 1019–1042 | MR | Zbl
[6] Gunzburger M. D., Lee H.-C., Seregin G., “Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions”, J. Math. Fluid Mech., 2:3 (2000), 219–266 | DOI | MR | Zbl
[7] San Martín J. A., Starovoitov V. N., Tucsnak M., “Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid”, Arch. Rational Mech. Anal., 161:2 (2002), 113–147 | DOI | MR | Zbl
[8] Galdi G. P., “On the motion of a rigid body in a viscous liquid: a mathemati analysis with applications”, Handbook of Math. Fluid Dynamics, v. I, Amsterdam, 2002, 653–791 | DOI | MR | Zbl
[9] Takahashi T., Tucsnak M., “Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid”, J. Math. Fluid Mech., 6:1 (2004), 53–77 | DOI | MR | Zbl
[10] Plotnikov P. I., Sokolowski J., “Shape derivative of drag functional”, SIAM J. Control Optim., 48:7 (2010), 4680–4706 | DOI | MR | Zbl
[11] Plotnikov P. I., Sokolowski J., “Shape Optimization for Navier–Stokes Equations”, Control of coupled partial differential equations, Internat. Ser. Numer. Math., 155, Basel, 2007, 249–267 | MR | Zbl
[12] Starovoitov V. N., “Statsionarnoe reshenie zadachi o dvizhenii shara v stoksovom techenii Puazeilya”, Sib. zhurn. industr. matematiki, 18:3 (2015), 76–85 | DOI | MR | Zbl
[13] Hillairet M., Takahashi T., “Collisions in three-dimensional fluid structure interaction problems”, SIAM J. Math. Anal., 40:6 (2009), 2451–2477 | DOI | MR | Zbl
[14] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR
[15] Starovoitov V. N., “Behavior of a rigid body in an incompressible viscous fluid near a boundary”, Free Boundary Problems, Internat. Ser. Numer. Math., 147, Basel, 2004, 313–327 | MR