Analysis of the stochastic motion of a~charged particle in a~magnetic field by the Monte Carlo method on supercomputers
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the influence of random noises on the motion of a charged particle in a magnetic field using statistical modeling for solving the emerging stochastic differential equation. Numerical results of experiments are given. For the analysis of numerical solutions, we use the frequency characteristics that generalize an integral curve and the phase portrait.
Keywords: stochastic differential equation, cumulative frequency curve, frequency phase portrait, generalized Euler method, charged particle, magnetic field.
@article{SJIM_2017_20_3_a3,
     author = {A. A. Ivanov},
     title = {Analysis of the stochastic motion of a~charged particle in a~magnetic field by the {Monte} {Carlo} method on supercomputers},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a3/}
}
TY  - JOUR
AU  - A. A. Ivanov
TI  - Analysis of the stochastic motion of a~charged particle in a~magnetic field by the Monte Carlo method on supercomputers
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 31
EP  - 38
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a3/
LA  - ru
ID  - SJIM_2017_20_3_a3
ER  - 
%0 Journal Article
%A A. A. Ivanov
%T Analysis of the stochastic motion of a~charged particle in a~magnetic field by the Monte Carlo method on supercomputers
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 31-38
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a3/
%G ru
%F SJIM_2017_20_3_a3
A. A. Ivanov. Analysis of the stochastic motion of a~charged particle in a~magnetic field by the Monte Carlo method on supercomputers. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 31-38. http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a3/

[1] Artsimovich L. A., Lukyanov S. Yu., Dvizhenie zaryazhennykh chastits v elektricheskikh i magnitnykh polyakh, Nauka, M., 1978

[2] Porshnev S. V., “Dinamicheskaya neustoichivost dvizheniya zaryazhennykh chastits v postoyannom neodnorodnom magnitnom pole”, Zhurn. radioelektroniki, 2000, no. 11, 1–8

[3] Artemev S. S., Ivanov A. A., Smirnov D. D., “Novye chastotnye kharakteristiki chislennogo resheniya stokhasticheskikh differentsialnykh uravnenii”, Sib. zhurn. vychisl. matematiki, 18:1 (2015), 15–26 | MR | Zbl

[4] Artemev S. S., Ivanov A. A., Korneev V. D., “Chislennyi analiz stokhasticheskikh ostsillyatorov na superkompyuterakh”, Sib. zhurn. vychisl. matematiki, 15:1 (2012), 31–43 | Zbl

[5] Artemev S. S., Ivanov A. A., “Analiz vliyaniya sluchainykh shumov na strannye attraktory metodom Monte-Karlo na superkompyuterakh”, Sib. zhurn. vychisl. matematiki, 18:2 (2015), 121–134 | MR | Zbl