Direct and inverse problems of gas emission and the sorptive deformation of coal beds
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using equations of state for fractured-porous media to describe the sorption-induced deformation of coal, we develop a geomechanical model for radial gas influx to a borehole drilled in a coal bed with the concurrent evolution of the stress field in the borehole environment. A numerical and analytical method is put forward for solving the corresponding system of equations for poroelastic media. The correlation is found between the volume of slack withdrawn from the borehole (when opening up gas-bearing seams), the sorption-and-storage capacities of coal, the permeability $k$, and the natural horizontal stress $\sigma_h$. The solvability is shown of the inverse boundary-coefficient problem on $k$ and $\sigma_h$ from the shut-in well pressure. The express-method for estimating the permeability from pressure measurements taken in a borehole operating in pressure drop mode is justified.
Keywords: coal bed, fracture-porous medium, permeability, intact rock mass stress, borehole, inverse problem.
Mots-clés : filtration
@article{SJIM_2017_20_2_a4,
     author = {L. A. Nazarova and L. A. Nazarov and M. Vandamme and J.-M. Pereira},
     title = {Direct and inverse problems of gas emission and the sorptive deformation of coal beds},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a4/}
}
TY  - JOUR
AU  - L. A. Nazarova
AU  - L. A. Nazarov
AU  - M. Vandamme
AU  - J.-M. Pereira
TI  - Direct and inverse problems of gas emission and the sorptive deformation of coal beds
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 41
EP  - 49
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a4/
LA  - ru
ID  - SJIM_2017_20_2_a4
ER  - 
%0 Journal Article
%A L. A. Nazarova
%A L. A. Nazarov
%A M. Vandamme
%A J.-M. Pereira
%T Direct and inverse problems of gas emission and the sorptive deformation of coal beds
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 41-49
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a4/
%G ru
%F SJIM_2017_20_2_a4
L. A. Nazarova; L. A. Nazarov; M. Vandamme; J.-M. Pereira. Direct and inverse problems of gas emission and the sorptive deformation of coal beds. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 41-49. http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a4/

[1] Malyshev Yu. N., Airuni A. T., Kompleksnaya degazatsiya ugolnykh shakht, Izd-vo AGN, M., 1999

[2] Puchkov L. A., Slastunov S. V., Kolikov K. S., Izvlechenie metana iz ugolnykh plastov, Izd-vo Moskovskogo gos. gornogo un-ta, M., 2002

[3] Enever J., Casey D., Bocking M., “The role of in situ stress in coalbed methane exploration”, Coalbed Methane: Scientific, Environmental and Economic Evaluation, Kluwer Acad. Publ., Dordrecht, 1999, 297–303 | DOI

[4] Seidle J., Fundations of Coalbed Methane Reservoir Engineering, PennWell Books, Tulsa, 2011

[5] Liu H. H., Rutqvist J., Berryman J. G., “On the relationship between stress and elastic strain for porous and fractured rock”, Internat. J. Rock Mech. Min. Sci., 46:2 (2009), 289–296 | DOI

[6] Rutqvist J., Wu Y.-S., Tsang C.-F., Bodvarsson G., “A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock”, Internat. J. Rock Mech. Min. Sci., 39 (2002), 429–442 | DOI

[7] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Prikl. matematika i mekhanika, 24:5 (1960), 58–73

[8] Connell L. D., “Coupled flow and geomechanical processes during gas production from coal seams”, Internat. J. Coal Geology, 79:1–2 (2009), 18–28 | DOI | MR

[9] Shi J. Q., Durucan S., “A bidisperse pore diffusion model for methane displacement desorption in coal by $CO_2$ injection”, Fuel, 82 (2003), 1219–1229 | DOI

[10] Brochard L., Vandamme M., Pellenq R. J.-M., “Poromechanics of microporous medium”, J. Mech. Phys. Solids, 60 (2012), 606–612 | DOI | MR

[11] Espinoza D. N., Vandamme M., Dangla P., Pereira J.-M., Vidal-Gilbert S., “A transvers isotroic model for microporous solids application to coal matrix adsorption and swelling”, J. Geophys. Res. Solid Earth, 118 (2013), 6113–6123 | DOI

[12] Espinoza D. N., Vandamme M., Pereira J.-M. et al., “Measurement and modeling of adsorptiveporomechanical properties of bituminous coal cores exposed to CO$me_2$: Adsorption, swelling strains, swelling stresses and impact on fracture permeability”, Internat. J. Coal Geology, 134–135 (2014), 80–95 | DOI

[13] Coussy O., Mechanics and Physics of Porous Solids, John Wiley Sons, 2010

[14] Khristianovich S. A., Kovalenko Yu. F., “Ob izmerenii davleniya gaza v ugolnykh plastakh”, Fiz.-tekhn. problemy razrabotki poleznykh iskopaemykh, 1988, no. 3, 3–24

[15] Khristianovich S. A., “Ob osnovakh teorii filtratsii”, Fiz.-tekhn. problemy razrabotki poleznykh iskopaemykh, 1991, no. 1, 3–17

[16] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR

[17] Tavernini L., Continuous-time modeling and simulation, Gordon and Breach, Amsterdam, 1996 | Zbl

[18] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[19] RD 05-350-00, Instruktsiya po bezopasnomu vedeniyu gornykh rabot na plastakh, opasnykh po vnezapnym vybrosam uglya (porody) i gaza. Prilozhenie 2: Preduprezhdenie gazodinamicheskikh yavlenii v ugolnykh shakhtakh, Gosgortekhnadzor, 2004

[20] Spravochnik (kadastr) fizicheskikh svoistv gornykh porod, Nedra, M., 1975

[21] Nazarova L. A., Nazarov L. A., Polevschikov G. Ya., Romin R. I., “Opredelenie koeffitsienta diffuzii i soderzhaniya gaza v ugle na osnove resheniya obratnoi zadachi”, Fiz.-tekhn. problemy razrabotki poleznykh iskopaemykh, 2012, no. 5, 15–23

[22] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[23] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988

[24] Nazarova L. A., Nazarov L. A., Karchevskii A. L., Vandamm M., “Otsenka diffuzionno-emkostnykh parametrov ugolnogo plasta po dannym izmereniya davleniya gaza v skvazhine na osnove resheniya obratnoi zadachi”, Sib. zhurn. industr. matematiki, 17:1 (2014), 78–85 | MR | Zbl

[25] Duchkov A. A., Karchevskii A. L., “Opredelenie glubinnogo teplovogo potoka po dannym monitoringa temperatury donnykh osadkov”, Sib. zhurn. industr. matematiki, 16:3 (2013), 61–85 | MR | Zbl

[26] Karchevskii A. L., “Chislennoe reshenie odnomernoi obratnoi zadachi dlya sistemy uprugosti”, Dokl. AN, 375:2 (2000), 235–238 | Zbl

[27] Karchevsky A. L., “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, J. Inverse Ill-Posed Probl., 12:5 (2004), 519–634 | DOI | MR