Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_2_a1, author = {N. B. Ayupova and V. P. Golubyatnikov}, title = {A three-cell model of the initial stage of the development of one proneural cluster}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {15--20}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/} }
TY - JOUR AU - N. B. Ayupova AU - V. P. Golubyatnikov TI - A three-cell model of the initial stage of the development of one proneural cluster JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 15 EP - 20 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/ LA - ru ID - SJIM_2017_20_2_a1 ER -
%0 Journal Article %A N. B. Ayupova %A V. P. Golubyatnikov %T A three-cell model of the initial stage of the development of one proneural cluster %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 15-20 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/ %G ru %F SJIM_2017_20_2_a1
N. B. Ayupova; V. P. Golubyatnikov. A three-cell model of the initial stage of the development of one proneural cluster. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 15-20. http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/
[1] Akinshin A. A., Bukharina T. A., Golubyatnikov V. P., Furman D. P., “Matematicheskoe modelirovanie vzaimodeistviya dvukh kletok v proneiralnom klastere krylovogo imaginalnogo diska D. melanogaster”, Vestn. NGU, 14:4 (2014), 3–10 | Zbl
[2] Bukharina T. A., Golubyatnikov V. P., Furman D. P., “A model study of the morphogenesis of D. melanogaster mechanoreceptors: The central regulatory circuit”, J. Bioinform. and Comput. Biology, 13:01 (2015), 1540006-1–1540006-15 | DOI
[3] Bukharina T. A., Golubyatnikov V. P., Golubyatnikov I. V., Furman D. P., “Modelnoe issledovanie tsentralnogo regulyatornogo kontura gennoi seti morfogeneza makrokhet D. Melanogaster”, Ontogenez, 43:1 (2012), 54–59
[4] Furman D. P., Bukharina T. A., “How Drosophila melanogaster forms its mechanoreceptors”, Current Genomics, 8 (2008), 312–323 | DOI
[5] Simpson P., Marcellini S., “The origin and evolution of stereotyped patterns of macrochaetes on the nota of Cyclorraphous Diptera”, Heredity, 97 (2006), 148–156 | DOI
[6] Hastings S., Tyson J. J., Webster D., “Existence of periodic solutions for negative feedbacks cellular control systems”, J. Differential Equations, 25 (1977), 39–64 | DOI | MR | Zbl
[7] Kazantsev M. V., “O nekotorykh svoistvakh grafov domenov dinamicheskikh sistem”, Sib. zhurn. industr. matematiki, 18:4 (2015), 42–48 | DOI | MR | Zbl
[8] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., Evdokimov A. A., Fadeev S. I., “Teoriya gennykh setei. Glava 5”, Sistemnaya kompyuternaya biologiya, Novosibirsk, 2008, 395–480 (Izd-vo SO RAN)
[9] Murray J. D., Mathematical biology. P. 1. An introduction, Springer-Verl., N.Y., 2002 | MR
[10] Golubyatnikov V. P., Golubyatnikov I. V., “O mnogomernykh modelyakh funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 13:3 (2010), 13–18 | MR | Zbl
[11] Golubyatnikov V. P., Golubyatnikov I. V., Likhoshvai V. A., “O suschestvovanii i ustoichivosti tsiklov v pyatimernykh modelyakh gennykh setei”, Sib. zhurn. vychisl. matematiki, 13:4 (2010), 403–411 | Zbl
[12] Gedeon T., Cyclic feedback systems, Memoirs of AMS, 134, no. 637, 1998, 72 pp. | DOI | MR
[13] Gaidov Yu. A., “Ob ustoichivosti periodicheskikh traektorii v nekotorykh modelyakh gennykh setei”, Sib. zhurn. industr. matematiki, 11:1 (2008), 57–62 | MR | Zbl
[14] Gaidov Yu. A., Golubyatnikov V. P., “On the existence and stability of cycles in gene networks with variable feedbacks”, Contemporary Mathematics, 553 (2011), 61–74 | DOI | MR | Zbl
[15] Golubyatnikov V. P., Golubyatnikov I. V., “On periodic trajectories in odd-dimensional gene networks models”, Russian J. Numer. Anal. Math. Modeling, 28:4 (2011), 397–412 | MR