A three-cell model of the initial stage of the development of one proneural cluster
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 15-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a $9$-dimensional nonlinear dynamical system modeling the initial stage of the interaction of three adjacent cells in a proneural cluster of Drosophila melanogaster. Conditions of existence of three stable equilibrium points in the phase portrait of this system are obtained, other equilibrium points are listed, a biological interpretation is given.
Keywords: nonlinear dynamical system, gene network, negative and positive feedback, equilibrium point, stability.
Mots-clés : phase portrait
@article{SJIM_2017_20_2_a1,
     author = {N. B. Ayupova and V. P. Golubyatnikov},
     title = {A three-cell model of the initial stage of the development of one proneural cluster},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {15--20},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/}
}
TY  - JOUR
AU  - N. B. Ayupova
AU  - V. P. Golubyatnikov
TI  - A three-cell model of the initial stage of the development of one proneural cluster
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 15
EP  - 20
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/
LA  - ru
ID  - SJIM_2017_20_2_a1
ER  - 
%0 Journal Article
%A N. B. Ayupova
%A V. P. Golubyatnikov
%T A three-cell model of the initial stage of the development of one proneural cluster
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 15-20
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/
%G ru
%F SJIM_2017_20_2_a1
N. B. Ayupova; V. P. Golubyatnikov. A three-cell model of the initial stage of the development of one proneural cluster. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 15-20. http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a1/

[1] Akinshin A. A., Bukharina T. A., Golubyatnikov V. P., Furman D. P., “Matematicheskoe modelirovanie vzaimodeistviya dvukh kletok v proneiralnom klastere krylovogo imaginalnogo diska D. melanogaster”, Vestn. NGU, 14:4 (2014), 3–10 | Zbl

[2] Bukharina T. A., Golubyatnikov V. P., Furman D. P., “A model study of the morphogenesis of D. melanogaster mechanoreceptors: The central regulatory circuit”, J. Bioinform. and Comput. Biology, 13:01 (2015), 1540006-1–1540006-15 | DOI

[3] Bukharina T. A., Golubyatnikov V. P., Golubyatnikov I. V., Furman D. P., “Modelnoe issledovanie tsentralnogo regulyatornogo kontura gennoi seti morfogeneza makrokhet D. Melanogaster”, Ontogenez, 43:1 (2012), 54–59

[4] Furman D. P., Bukharina T. A., “How Drosophila melanogaster forms its mechanoreceptors”, Current Genomics, 8 (2008), 312–323 | DOI

[5] Simpson P., Marcellini S., “The origin and evolution of stereotyped patterns of macrochaetes on the nota of Cyclorraphous Diptera”, Heredity, 97 (2006), 148–156 | DOI

[6] Hastings S., Tyson J. J., Webster D., “Existence of periodic solutions for negative feedbacks cellular control systems”, J. Differential Equations, 25 (1977), 39–64 | DOI | MR | Zbl

[7] Kazantsev M. V., “O nekotorykh svoistvakh grafov domenov dinamicheskikh sistem”, Sib. zhurn. industr. matematiki, 18:4 (2015), 42–48 | DOI | MR | Zbl

[8] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., Evdokimov A. A., Fadeev S. I., “Teoriya gennykh setei. Glava 5”, Sistemnaya kompyuternaya biologiya, Novosibirsk, 2008, 395–480 (Izd-vo SO RAN)

[9] Murray J. D., Mathematical biology. P. 1. An introduction, Springer-Verl., N.Y., 2002 | MR

[10] Golubyatnikov V. P., Golubyatnikov I. V., “O mnogomernykh modelyakh funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 13:3 (2010), 13–18 | MR | Zbl

[11] Golubyatnikov V. P., Golubyatnikov I. V., Likhoshvai V. A., “O suschestvovanii i ustoichivosti tsiklov v pyatimernykh modelyakh gennykh setei”, Sib. zhurn. vychisl. matematiki, 13:4 (2010), 403–411 | Zbl

[12] Gedeon T., Cyclic feedback systems, Memoirs of AMS, 134, no. 637, 1998, 72 pp. | DOI | MR

[13] Gaidov Yu. A., “Ob ustoichivosti periodicheskikh traektorii v nekotorykh modelyakh gennykh setei”, Sib. zhurn. industr. matematiki, 11:1 (2008), 57–62 | MR | Zbl

[14] Gaidov Yu. A., Golubyatnikov V. P., “On the existence and stability of cycles in gene networks with variable feedbacks”, Contemporary Mathematics, 553 (2011), 61–74 | DOI | MR | Zbl

[15] Golubyatnikov V. P., Golubyatnikov I. V., “On periodic trajectories in odd-dimensional gene networks models”, Russian J. Numer. Anal. Math. Modeling, 28:4 (2011), 397–412 | MR