Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_2_a0, author = {S. S. Artemiev and M. A. Yakunin}, title = {Parametric analysis of the oscillatory solutions to {SDEs} with {Wiener} and {Poisson} components by {a~Monte} {Carlo} method}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {3--14}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a0/} }
TY - JOUR AU - S. S. Artemiev AU - M. A. Yakunin TI - Parametric analysis of the oscillatory solutions to SDEs with Wiener and Poisson components by a~Monte Carlo method JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 3 EP - 14 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a0/ LA - ru ID - SJIM_2017_20_2_a0 ER -
%0 Journal Article %A S. S. Artemiev %A M. A. Yakunin %T Parametric analysis of the oscillatory solutions to SDEs with Wiener and Poisson components by a~Monte Carlo method %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 3-14 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a0/ %G ru %F SJIM_2017_20_2_a0
S. S. Artemiev; M. A. Yakunin. Parametric analysis of the oscillatory solutions to SDEs with Wiener and Poisson components by a~Monte Carlo method. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a0/
[1] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 3, Nauka, M., 1975 | MR
[2] Platen E., Bruti-Liberati N., Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer-Verl., Berlin–Heidelberg, 2010 | MR | Zbl
[3] Mikulevicius R., Platen E., “Time discrete Taylor approximations for Ito processes with jump component”, Math. Nachr., 138 (1988), 93–104 | DOI | MR | Zbl
[4] Kuznetsov D. F., Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya, Izd-vo Politekhn. un-ta, SPb., 2010 | MR
[5] Averina T. A., “Metody statisticheskogo modelirovaniya neodnorodnogo puassonovskogo ansamblya”, Sib. zhurn. vychisl. matematiki, 12:4 (2009), 361–374 | Zbl
[6] Artemev S. S., Chislennoe reshenie zadachi Koshi dlya sistem obyknovennykh i stokhasticheskikh differentsialnykh uravnenii, Izd-vo VTs SO RAN, Novosibirsk, 1993
[7] Artemev S. S., Ivanov A. A., Korneev V. D., “Chislennyi analiz stokhasticheskikh ostsillyatorov na superkompyuterakh”, Sib. zhurn. vychisl. matematiki, 15:1 (2012), 31–43 | Zbl
[8] Averina T. A., Alifirenko A. A., “Analiz ustoichivosti lineinogo ostsillyatora s multiplikativnym shumom”, Sib. zhurn. vychisl. matematiki, 10:2 (2007), 127–145 | Zbl
[9] Averina T. A., “Chislennoe reshenie stokhasticheskikh differentsialnykh uravnenii s puassonovskoi sostavlyayuschei”, Teoriya i prilozheniya statisticheskogo modelirovaniya, Izd-vo VTs SO AN SSSR, Novosibirsk, 1989, 81–89
[10] Guo S.-S., Er G.-K., “The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation”, Central European J. Physics, 10:3 (2012), 702–707
[11] Tikhonov V. I., Statisticheskaya radiotekhnika, Radio i svyaz, M., 1982