Asymptotics of anisotropic weakly curved inclusions in an elastic body
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 93-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study boundary value problems that describeg the equilibrium for two-dimensional elastic bodies with thin weakly curved anisotropic inclusions. The presence of an inclusion means the existence of a crack between the inclusion and the elastic matrix. Nonlinear boundary conditions in the form of inequalities are imposed on the crack faces to prevent their mutual penetration, which leads to formulating the problems as problems with unknown contact domain. Limit passages are investigated over the rigidity parameters of the thin inclusions. In particular, we construct the models obtained by letting the rigidity parameters tend to infinity and analyze their properties.
Keywords: thin inclusion, elastic body, crack, nonlinear boundary condition, limit model.
@article{SJIM_2017_20_1_a9,
     author = {A. M. Khludnev},
     title = {Asymptotics of anisotropic weakly curved inclusions in an elastic body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a9/}
}
TY  - JOUR
AU  - A. M. Khludnev
TI  - Asymptotics of anisotropic weakly curved inclusions in an elastic body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 93
EP  - 104
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a9/
LA  - ru
ID  - SJIM_2017_20_1_a9
ER  - 
%0 Journal Article
%A A. M. Khludnev
%T Asymptotics of anisotropic weakly curved inclusions in an elastic body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 93-104
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a9/
%G ru
%F SJIM_2017_20_1_a9
A. M. Khludnev. Asymptotics of anisotropic weakly curved inclusions in an elastic body. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a9/

[1] Grisvard P., Singularities in Boundary Value Problems, Springer-Verl., Masson, 1992 | MR | Zbl

[2] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984

[3] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[4] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[5] Kovtunenko V. A., “Invariantnye integraly energii dlya nelineinoi zadachi o treschine s vozmozhnym kontaktom beregov”, Prikl. matematika i mekhanika, 67:1 (2003), 109–123 | MR | Zbl

[6] Kovtunenko V. A., “Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration”, IMA J. Appl. Math., 71:5 (2006), 635–657 | DOI | MR | Zbl

[7] Knees D., Mielke A., “Energy release rate for cracks in finite-strain elasticity”, Math. Meth. Appl. Sci., 31:5 (2008), 501–518 | DOI | MR

[8] Knees D., Schroder A., “Global spatial regularity for elasticitymodels with cracks, contact and other nonsmooth constraints”, Math. Meth. Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl

[9] Rudoi E. M., “Formula Griffitsa i integral Cherepanova–Raisa dlya plastiny s zhestkim vklyucheniem i treschinoi”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:2 (2010), 98–117

[10] Rudoi E. M., “Asimptotika funktsionala energii dlya trekhmernogo tela s zhestkim vklyucheniem i treschinoi”, Prikl. mekhanika i tekhn. fizika, 52:2 (2011), 114–127 | MR

[11] Lazarev N. P., “Zadacha o ravnovesii pologoi obolochki Timoshenko, soderzhaschei skvoznuyu treschinu”, Sib. zhurn. industr. matematiki, 15:3 (2012), 58–69 | MR | Zbl

[12] Khludnev A. M., “Zadacha o treschine na granitsezhestkogo vklyucheniya v uprugoi plastine”, Izv. RAN. Mekhanika tverdogo tela, 2010, no. 5, 98–110

[13] Khludnev A. M., “O ravnovesii dvusloinoi uprugoi konstruktsii s treschinoi”, Sib. zhurn. industr. matematiki, 16:2 (2013), 144–153 | Zbl

[14] Khludnev A. M., Negri M., “Crack on the boundary of a thin elastic inclusion inside an elastic body”, Z. Angew. Math. Mech., 92:5 (2012), 341–354 | DOI | Zbl

[15] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, European J. Mech. A Solids, 32 (2012), 69–75 | DOI | MR | Zbl

[16] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[17] Khludnev A. M., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl

[18] Khludnev A. M., Leugering G. R., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Systems, 2:1 (2014), 1–21 | DOI | MR | Zbl

[19] Khludnev A. M., Leugering G. R., “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl

[20] Scherbakov V. V., “Ob odnoi zadache upravleniya formoi tonkikh vklyuchenii v uprugikh telakh”, Sib. zhurn. industr. matematiki, 16:1 (2013), 138–147 | MR

[21] Scherbakov V. V., “Suschestvovanie optimalnoi formy tonkikh zhestkikh vklyuchenii v plastine Kirkhgofa–Lyava”, Sib. zhurn. industr. matematiki, 16:4 (2013), 142–151 | MR

[22] Khludnev A. M., “Optimalnoe upravlenie vklyucheniyami v uprugom tele, peresekayuschimi vneshnyuyu granitsu”, Sib. zhurn. industr. matematiki, 18:4 (2015), 75–87 | MR | Zbl

[23] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl

[24] Khludnev A. M., “Singular invariant integrals for elastic body with delaminated thin elastic inclusion”, Quart. Appl. Math., 72:4 (2014), 719–730 | DOI | MR | Zbl

[25] Lazarev N. P., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl

[26] Lazarev N. P., Rudoy E. M., “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94 (2014), 730–739 | DOI | MR | Zbl

[27] Rudoi E. M., Khludnev A. M., “Odnostoronnii kontakt plastiny s tonkim uprugim prepyatstviem”, Sib. zhurn. industr. matematiki, 12:2 (2009), 120–130 | MR | Zbl

[28] Bessoud A.-L., Krasucki F., Serpilli M., “Plate-like and shell-like inclusionswith high rigidity”, C. R. Math. Acad. Sci. Ser. I Math., 346 (2008), 697–702 | MR | Zbl

[29] Bessoud A.-L., Krasucki F., Michaille G., “Multi-materials with strong interface: Variational modelings”, Asymptotic Anal., 61:1 (2009), 1–19 | MR | Zbl

[30] Pasternak I. M., “Plane problem of elasticity theory for anisotropic bodies with thin elastic inclusions”, J. Math. Sci., 186:1 (2012), 31–47 | DOI | MR

[31] Kozlov V. A., Maz'ya V. G., Movchan A. B., Asymptotic analysis of fields in a multi-structure, Oxford Univ. Press, N.Y., 1999 | MR

[32] Vynnytska L., Savula Y., “Mathematical modeling and numerical analysis of elastic body with thin inclusion”, Comput. Mech., 50:5 (2004), 533–542 | DOI | MR

[33] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | MR | Zbl

[34] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[35] Rotanova T. A., “O postanovkakh i razreshimosti zadach o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR | Zbl

[36] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972

[37] Khludnev A. M., “Slabo iskrivlennoe vklyuchenie v uprugom tele pri nalichii otsloeniya”, Izv. RAN. Mekhanika tverdogo tela, 2015, no. 5, 131–144