Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_1_a7, author = {I. V. Prokhorov and A. A. Sushchenko and A. Kim}, title = {An initial boundary value problem for the radiative transfer equation with diffusion matching conditions}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {75--85}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a7/} }
TY - JOUR AU - I. V. Prokhorov AU - A. A. Sushchenko AU - A. Kim TI - An initial boundary value problem for the radiative transfer equation with diffusion matching conditions JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 75 EP - 85 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a7/ LA - ru ID - SJIM_2017_20_1_a7 ER -
%0 Journal Article %A I. V. Prokhorov %A A. A. Sushchenko %A A. Kim %T An initial boundary value problem for the radiative transfer equation with diffusion matching conditions %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 75-85 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a7/ %G ru %F SJIM_2017_20_1_a7
I. V. Prokhorov; A. A. Sushchenko; A. Kim. An initial boundary value problem for the radiative transfer equation with diffusion matching conditions. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a7/
[1] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978
[2] Isimaru A., Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, Mir, M., 1981
[3] Derevtsov E. Yu., “Chislennoe reshenie zadachi refraktsionnoi tomografii v tsilindricheskoi oblasti”, Sib. zhurn. industr. matematiki, 18:4 (2015), 30–41 | MR | Zbl
[4] Prokhorov I. V., Suschenko A. A., “Issledovanie zadachi akusticheskogo zondirovaniya morskogo dna metodami teorii perenosa izlucheniya”, Akusticheskii zhurn., 61:3 (2015), 400–408 | DOI
[5] Prokhorov I. V., Suschenko A. A., Kan V. A., “Ob odnoi zadache opredeleniya relefa dna fluktuiruyuschego okeana”, Sib. zhurn. industr. matematiki, 18:2 (2015), 99–110 | MR | Zbl
[6] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158 | MR
[7] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981
[8] Novikov V. M., Shikhov S. B., Teoriya parametricheskogo vozdeistviya na perenos neitronov, Energoizdat, M., 1982
[9] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR
[10] Anikonov D. S., Konovalova D. S., “Kineticheskoe uravnenie perenosa dlya sluchaya komptonovskogo rasseyaniya”, Sib. mat. zhurn., 43:5 (2002), 987–1001 | MR | Zbl
[11] Anikonov D. S., Konovalova D. S., “Kraevaya zadacha dlya uravneniya perenosa s chisto komptonovskim rasseyaniem”, Sib. mat. zhurn., 46:1 (2005), 3–16 | MR | Zbl
[12] Yarovenko I. P., “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s uchetom komptonovskogo rasseyaniya”, Dalnevost. mat. zhurn., 14:1 (2014), 109–121 | MR | Zbl
[13] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000
[14] Anikonov D. S., Nazarov V. G., Prokhorov I. V., Poorly Visible Media in X-ray Tomography, VSP, Utrecht–Boston, 2002 | Zbl
[15] Prokhorov I. V., Yarovenko I. P., “Issledovanie zadach opticheskoi tomografii metodami teorii perenosa izlucheniya”, Optika i spektroskopiya, 101:5 (2006), 817–824
[16] Prokhorov I. V., Yarovenko I. P., Nazarov V. G., “Optical tomography problems at layered media”, Inverse Problems, 24:2 (2008), Article number 025019 | DOI | MR | Zbl
[17] Prokhorov I. V., “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differents. uravneniya, 36:6 (2000), 848–851 | MR | Zbl
[18] Prokhorov I. V., “Opredelenie poverkhnosti razdela sred po dannym tomograficheskogo prosvechivaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 42:10 (2002), 1542–1555 | MR | Zbl
[19] Prokhorov I. V., “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izv. RAN. Ser. matematicheskaya, 67:6 (2003), 169–192 | DOI | MR | Zbl
[20] Prokhorov I. V., “O strukture mnozhestva nepreryvnosti resheniya kraevoi zadachi dlya uravneniya perenosa izlucheniya”, Mat. zametki, 86:2 (2009), 256–272 | DOI | MR | Zbl
[21] Kovtanyuk A. E., Prokhorov I. V., “A boundary-value problem for the polarized-radiation transfer equation with Fresnel interface conditions for a layered medium”, J. Comput. Appl. Math., 235:8 (2011), 2006–2014 | DOI | MR | Zbl
[22] Prokhorov I. V., “O razreshimosti nachalno-kraevoi zadachi dlya integrodifferentsialnogo uravneniya”, Sib. mat. zhurn., 53:2 (2012), 377–387 | MR | Zbl
[23] Prokhorov I. V., “Zadacha Koshi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 53:5 (2013), 753–766 | DOI | MR | Zbl
[24] Amosov A. A., “Boundary value problem for the radiation transfer equation with reflection and refraction conditions”, J. Math. Sci., 191:2 (2013), 101–149 | DOI | MR | Zbl
[25] Amosov A. A., “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci., 193:2 (2013), 151–176 | DOI | MR | Zbl
[26] Prokhorov I. V., Suschenko A. A., “O korrektnosti zadachi Koshi dlya uravneniya perenosa izlucheniya s frenelevskimi usloviyami sopryazheniya”, Sib. mat. zhurn., 56:4 (2015), 922–933 | MR | Zbl
[27] Mizokhata C., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977
[28] Pazy A., Semigroups of linear Operators and Applications to Partial Differential Equations, Applied Mathematics Sciences, 44, Springer-Verl., N.Y., 1983 | DOI | MR | Zbl