Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_1_a6, author = {M. V. Neshchadim}, title = {Functional-invariant solutions to the {Maxwell} system}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {66--74}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a6/} }
M. V. Neshchadim. Functional-invariant solutions to the Maxwell system. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 66-74. http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a6/
[1] Erugin N. P., Smirnov M. M., “Funktsionalno–invariantnye resheniya differentsialnykh uravnenii”, Differents. uravneniya, 17:5 (1981), 853–865 | MR | Zbl
[2] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972
[3] Babich V. M., “Mnogomernyi metod VKB ili luchevoi metod. Ego analogi i obobscheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI, M., 1988, 93–134 | MR | Zbl
[4] Neschadim M. V., “Klassy obobschennykh funktsionalno-invariantnykh reshenii volnovogo uravneniya. I”, Sib. elektron. mat. izvestiya, 10 (2013), 418–435 http://semr.math.nsc.ru
[5] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[6] Smirnov V. I., Sobolev S. L., Novyi metod resheniya ploskoi zadachi uprugikh kolebanii, Tr. Seismolog. in-ta AN SSSR, 20, 1932, 37 pp.
[7] Smirnov V. I., Sobolev S. L., “O primenenii novogo metoda k izucheniyu uprugikh kolebanii v prostranstve pri nalichii osevoi simmetrii”, Tr. Seismolog. in-ta AN SSSR, 29, 1933, 43–51
[8] Sobolev S. L., “Funktsionalno-invariantnye resheniya volnovogo uravneniya”, Tr. Fiz.-mat. in-ta im. Steklova, 5, 1934, 259–264 | Zbl
[9] Shneerson M. S., “Uravneniya Maksvella i funktsionalno-invariantnye resheniya volnovogo uravneniya”, Differents. uravneniya, 4:4 (1968), 743–758 | MR | Zbl
[10] Stelmashuk N. T., “Postroenie funktsionalno-invariantnykh reshenii sistemy Maksvella dlya elektromagnitnogo polya v pustote”, Vestn. AN BSSR. Ser. Fiz.-mat. nauki, 1974, no. 4, 35–39
[11] Neschadim M. V., “Resheniya sistemy Maksvella s nulevymi invariantami”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 6:3 (2006), 59–61
[12] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. I”, Sib. zhurn. industr. matematiki, 14:1 (2011), 27–39 | MR | Zbl
[13] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. II”, Sib. zhurn. industr. matematiki, 14:2 (2011), 28–33 | MR | Zbl
[14] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978
[15] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989
[16] Neshchadim M. V., “Equivalent transformations and some exact solutions to the system of Maxwell's equations”, Selcuk J. Appl. Math., 3:2 (2002), 99–108 | MR | Zbl
[17] Anikonov Yu. E., Neschadim M. V., “Predstavleniya dlya reshenii i koeffitsientov differentsialnykh uravnenii 2-go poryadka”, Sib. zhurn. industr. matematiki, 15:4 (2012), 17–23 | MR | Zbl
[18] Anikonov Yu. E., Neschadim M. V., “Predstavleniya reshenii i koeffitsientov evolyutsionnykh uravnenii”, Sib. zhurn. industr. matematiki, 16:2 (2013), 40–49 | MR | Zbl
[19] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1988