Dependence on the domain of solutions to a~boundary value problem for the equations of mixtures of compressible viscous fluids
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the dependence of solutions to an inhomogeneous boundary value problem for the equations of mixtures of compressible viscous fluids on the shape of the flow domain. The results can be used to prove the differentiability of the solutions and functionals of the solutions (for example, the drag functional) with respect to the parameter defining the shape variations of an obstacle in the flow.
Keywords: mixture of viscous compressible fluids, flow around an obstacle, transposed problem, boundary value problem.
@article{SJIM_2017_20_1_a4,
     author = {A. A. Zhalnina and N. A. Kucher},
     title = {Dependence on the domain of solutions to a~boundary value problem for the equations of mixtures of compressible viscous fluids},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a4/}
}
TY  - JOUR
AU  - A. A. Zhalnina
AU  - N. A. Kucher
TI  - Dependence on the domain of solutions to a~boundary value problem for the equations of mixtures of compressible viscous fluids
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 41
EP  - 52
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a4/
LA  - ru
ID  - SJIM_2017_20_1_a4
ER  - 
%0 Journal Article
%A A. A. Zhalnina
%A N. A. Kucher
%T Dependence on the domain of solutions to a~boundary value problem for the equations of mixtures of compressible viscous fluids
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 41-52
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a4/
%G ru
%F SJIM_2017_20_1_a4
A. A. Zhalnina; N. A. Kucher. Dependence on the domain of solutions to a~boundary value problem for the equations of mixtures of compressible viscous fluids. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a4/

[1] Zhalnina A. A., Kucher N. A., “O korrektnosti neodnorodnoi kraevoi zadachi dlya uravnenii smesei vyazkikh szhimaemykh zhidkostei”, Sib. zhurn. industr. matematiki, 18:3 (2015), 26–39 | MR | Zbl

[2] Rajagopal K. R., Tao L., Mechanics of Mixtures, World Sci., Singapore, 1995 | MR | Zbl

[3] Kraiko A. N., Nigmatulin R. I., “Mekhanika mnogofaznykh sred”, Itogi nauki i tekhniki. Ser. Gidromekhanika, 6, 1972, 93–174

[4] Nigmatulin R. I., Dinamika mnogofaznykh sred, Ch. 1, Nauka, M., 1987

[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988

[6] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[7] Plotnikov P., Sokolowski J., Compressible Navier–Stokes Equations: Theory and Shape Optimization, Springer-Verl., Basel, 2012 | MR | Zbl

[8] Galdi G., An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, Springer Sci., N.Y., 2011 | MR | Zbl