Identification of the fixedness and loadedness of an end of an Euler--Bernoulli beam from its natural vibration frequencies
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a uniform Euler–Bernoulli beam whose left end is fixed and whose right end has a load fixed by two springs. Being hit, the beam starts vibrating. The aim of the paper is to determine the fixedness parameters (the spring stiffness coefficients) and the loadedness parameters (the mass and moment of inertia of the load) of the right end of the beam from the natural frequencies of its bending vibrations. We show that the four unknown parameters of the boundary conditions on the right end of the beam are uniquely determined by five natural frequencies of bending vibrations. A counterexample is exhibited demonstrating that four natural frequencies are insufficient for the unique identification of these four nonnegative parameters.
Keywords: eigenvalue, natural frequency, beam, inverse problem, spring stiffness coefficient.
Mots-clés : point inertia element
@article{SJIM_2017_20_1_a0,
     author = {A. A. Aitbaeva and A. M. Akhtyamov},
     title = {Identification of the fixedness and loadedness of an end of an {Euler--Bernoulli} beam from its natural vibration frequencies},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a0/}
}
TY  - JOUR
AU  - A. A. Aitbaeva
AU  - A. M. Akhtyamov
TI  - Identification of the fixedness and loadedness of an end of an Euler--Bernoulli beam from its natural vibration frequencies
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 3
EP  - 10
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a0/
LA  - ru
ID  - SJIM_2017_20_1_a0
ER  - 
%0 Journal Article
%A A. A. Aitbaeva
%A A. M. Akhtyamov
%T Identification of the fixedness and loadedness of an end of an Euler--Bernoulli beam from its natural vibration frequencies
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 3-10
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a0/
%G ru
%F SJIM_2017_20_1_a0
A. A. Aitbaeva; A. M. Akhtyamov. Identification of the fixedness and loadedness of an end of an Euler--Bernoulli beam from its natural vibration frequencies. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a0/

[1] Kapustin N. Yu., Moiseev E. I., “O spektralnykh zadachakh so spektralnym parametrom v granichnom uslovii”, Differents. uravneniya, 33:1 (1997), 115–119 | MR | Zbl

[2] Aliev A. R., Eivazov E. Kh., “Dokazatelstvo polnoty sobstvennykh funktsii operatora Shturma–Liuvillya v divergentnom vide metodom konechnykh raznostei”, Zhurn. vychisl. matematiki i mat. fiziki, 55:1 (2015), 3–9 | DOI | MR | Zbl

[3] Shkalikov A. A., Savchuk A. M., “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego prilozheniya, 44:4 (2010), 34–53 | DOI | MR | Zbl

[4] Mamedov Kh. R., Cetinkaya F. A., “A uniqueness theorem for a Sturm–Liouville equation with spectral parameter in boundary conditions”, Appl. Math. Inform. Sci., 9:2 (2015), 981–988 | MR

[5] Chu M. T., Golub G. H., Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, Univ. Press, Oxford, 2005 | MR | Zbl

[6] Gladvell G. M. L., Obratnye zadachi teorii kolebanii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2008

[7] Akhtyamov A. M., Teoriya identifikatsii kraevykh uslovii, Gilem, Ufa, 2008

[8] Morassi A., Dilena M., “On point mass identification in rods and beams from minimal frequency measurements”, Inverse Probl. Engrg., 10:3 (2002), 183–201 | DOI

[9] Vatulyan A. O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela, Fizmatlit, M., 2007

[10] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990

[11] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995

[12] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[13] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[14] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[15] Akhatov I. Sh., Akhtyamov A. M., “Opredelenie vida zakrepleniya sterzhnya po sobstvennym chastotam ego izgibnykh kolebanii”, Prikl. matematika i mekhanika, 65:2 (2001), 290–298 | MR | Zbl

[16] Akhtyamov A. M., Muftakhov A. V., Akhtyamova A. A., “Ob opredelenii zakrepleniya i nagruzhennosti odnogo iz kontsov sterzhnya po sobstvennym chastotam ego kolebanii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 3, 114–129 | Zbl

[17] Akhtyamov A. M., Urmancheev S. F., “Opredelenie parametrov tverdogo tela, prikreplennogo k odnomu iz kontsov balki, po sobstvennym chastotam kolebanii”, Sib. zhurn. industr. matematiki, 11:4 (2008), 19–24 | Zbl

[18] Vatulyan A. O., Soluyanov N. O., “Ob opredelenii mestopolozheniya i razmera polosti v uprugom sterzhne”, Defektoskopiya, 2005, no. 9, 44–56

[19] Vatulyan A. O., Soluyanov N. O., “Identifikatsiya polosti v uprugom sterzhne pri analize poperechnykh kolebanii”, Prikl. mekhanika i tekhn. fizika, 49:6 (2008), 152–158

[20] Akhtyamov A. M., Ayupova A. R., “Diagnostirovanie polosti v sterzhne metodom otritsatelnoi massy”, Defektoskopiya, 46:5 (2010), 29–35

[21] Ilgamov M. A., Khakimov A. G., “Diagnostika povrezhdenii konsolnoi balki s nadrezom”, Defektoskopiya, 2009, no. 6, 83–89

[22] Ilgamov M. A., Khakimov A. G., “Diagnostika zakrepleniya i povrezhdenii balki na uprugikh oporakh”, Kontrol. Diagnostika, 2010, no. 9, 57–63

[23] Kollatts L., Zadachi na sobstvennye znacheniya (s tekhnicheskimi prilozheniyami), Nauka, M., 1968

[24] V. V. Bolotin (red.), Vibratsii v tekhnike: Spravochnik, v. 1, Kolebaniya lineinykh sistem, Mashinostroenie, M., 1978

[25] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[26] Akhtyamova A. A., Akhtyamov A. M., “Ob odnoznachnosti identifikatsii parametrov uprugogo zakrepleniya i sosredotochennogo inertsionnogo elementa”, Vychisl. mekhanika sploshnykh sred, 6:1 (2013), 62–69

[27] Akhtyamov A. M., Kumushbaev R. R., “Identifikatsiya polinoma v neraspadayuschikhsya kraevykh usloviyakh v sluchae kratnogo nulevogo sobstvennogo znacheniya”, Ufim. mat. zhurn., 7:1 (2015), 13–18 | MR