On determining the source function in heat and mass transfer problems under integral overdetermination conditions
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 93-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine an inverse problem of determining the right-hand side (source function) in a parabolic equation from integral overdetermination data. By a solution to a parabolic equation we mean a weak solution, and the right-hand side in this equation can be a distribution of a certain class. Under some conditions on the data of the problem, we demonstrate that this inverse problem is well-posed and, in particular, stability estimates hold.
Keywords: inverse problem, second-order parabolic equation, boundary value problem, integral overdetermination condition, weak solution.
@article{SJIM_2016_19_4_a9,
     author = {S. G. Pyatkov and M. V. Uvarova},
     title = {On determining the source function in heat and mass transfer problems under integral overdetermination conditions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a9/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - M. V. Uvarova
TI  - On determining the source function in heat and mass transfer problems under integral overdetermination conditions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 93
EP  - 100
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a9/
LA  - ru
ID  - SJIM_2016_19_4_a9
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A M. V. Uvarova
%T On determining the source function in heat and mass transfer problems under integral overdetermination conditions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 93-100
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a9/
%G ru
%F SJIM_2016_19_4_a9
S. G. Pyatkov; M. V. Uvarova. On determining the source function in heat and mass transfer problems under integral overdetermination conditions. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 93-100. http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a9/

[1] Marchuk G. I., Mathematical Modelling in Environmental Problems, Studies in Mathematics and their Applications, 16, Elsevier Sci. Publ., Amsterdam, 1986 | MR

[2] Ozisik M. N., Orlando H. A. B., Inverse Heat Transfer, Taylor Francis, N.Y., 2000

[3] El Badia A., Ha-Duong T., Hamdi A., “Identification of a point source in a linear advection-dispersion-reaction equation: application to a pollution source problem”, Inverse Problems, 21 (2005), 1–17 | DOI | MR

[4] Boano F., Revelli R., Ridolfi L., “Source identification in river pollution problems: a geostatistical approach”, Water Recources Res., 41 (2005), 1–13

[5] Ling L., Takeuchi T., “Point sources identification problems for heat equations”, Comm. Comput. Phys., 5:5 (2009), 897–913 | MR

[6] Panasenko A. E., Starchenko A. V., “Chislennoe reshenie nekotorykh obratnykh zadach s razlichnymi tipami istochnikov atmosfernogo zagryazneniya”, Vestn. Tomsk. gos. un-ta. Matematika i mekhanika, 2008, no. 2(3), 47–55

[7] Hamdi A., “Identication of point sources in two dimensional advection-diffusion-reaction equation: Application to pollution sources in a river. Stationary case”, Inverse Problems Sci. Engrg., 15:8 (2007), 855–870 | DOI | MR | Zbl

[8] Murray-Bruce J., Dragotti P. L., “Estimating localized sources of diffusion fields using spatiotemporal sensor measurements”, IEEE Trans. Signal Processing, 63:12 (2015), 3018–3031 | DOI | MR

[9] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.Y., 1999 | MR

[10] Ivanchov M., Inverse Problems for Equations of Parabolic Type, Math. Studies. Monograph Series, 10, WNTL Publ., Lviv, 2003 | MR

[11] Iskenderov A. D., Akhundov A. Ya., “Inverse problem for a linear system of parabolic equations”, Doklady Mathematics, 79:1 (2009), 73–75 | DOI | MR | Zbl

[12] Ismailov M. I., Kanca F., “Inverse problem of finding the time-dependent coefficient of heat equation from integral overdetermination condition data”, Inverse Problems Sci. Engrg., 20:24 (2012), 463–476 | MR | Zbl

[13] Li Jing, Xu Youjun, “An inverse coefficient problem with nonlinear parabolic equation”, J. Appl. Math. Comput., 34 (2010), 195–206 | DOI | MR | Zbl

[14] Kerimov N. B., Ismailov M. I., “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. Math. Anal. Appl., 396 (2012), 546–554 | DOI | MR | Zbl

[15] Kozhanov A. I., “Parabolicheskie uravneniya s neizvestnym koeffitsientom, zavisyaschim ot vremeni”, Zhurn. vychisl. matematiki i mat. fiziki, 45:12 (2005), 2168–2184 | MR | Zbl

[16] Kriksin Yu. A., Plyuschev S. N., Samarskaya E. A., Tishkin V. F., “Obratnaya zadacha vosstanovleniya plotnosti istochnika dlya uravneniya konvektsii-diffuzii”, Mat. modelirovanie, 7:11 (1995), 95–108 | MR | Zbl

[17] Pyatkov S. G., Safonov E. I., “O nekotorykh klassakh lineinykh obratnykh zadach dlya parabolicheskikh sistem uravnenii”, Nauch. vedomosti Belgorod. gos. un-ta. Matematika. Fizika, 12(183):35 (2014), 61–75

[18] Pyatkov S. G., Safonov E. I., “Ob opredelenii funktsii istochnika v matematicheskikh modelyakh konvektsii-diffuzii”, Mat. zametki SVFU, 21:2(82) (2014), 117–130 | Zbl

[19] Pyatkov S. G., Safonov E. I., “O nekotorykh klassakh lineinykh obratnykh zadach dlya parabolicheskikh sistem uravnenii”, Sib. elektron. mat. izvestiya, 11 (2014), 777–799 | Zbl

[20] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[21] Amann H., “Nonautonomous parabolic equations involving measures”, J. Math. Sci., 130:4 (2005), 4780–4802 | DOI | MR | Zbl

[22] Amann H., “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary-value problems”, Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126 | DOI | MR | Zbl

[23] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR