Mathematical modeling of one flow in a~pipe using the method of $R$-functions
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 68-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the flow in a pipe of rectangular cross section with an inner circular cylindrical element. We use a numerical method that is based on $R$-functions. This method is meshfree and therefore more efficient than the finite element method which requires remeshing when the geometry of the problem is changed. We consider the dependence of the flow on the diameter of the central cylinder and its position in the square pipe under constant pressure gradient. It is found that the resistance decreases when the inner element is displaced from the center of the pipe.
Keywords: $R$-function, pipe flow, meshfree method.
@article{SJIM_2016_19_3_a5,
     author = {A. V. Proskurin and A. M. Sagalakov},
     title = {Mathematical modeling of one flow in a~pipe using the method of $R$-functions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {68--74},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a5/}
}
TY  - JOUR
AU  - A. V. Proskurin
AU  - A. M. Sagalakov
TI  - Mathematical modeling of one flow in a~pipe using the method of $R$-functions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 68
EP  - 74
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a5/
LA  - ru
ID  - SJIM_2016_19_3_a5
ER  - 
%0 Journal Article
%A A. V. Proskurin
%A A. M. Sagalakov
%T Mathematical modeling of one flow in a~pipe using the method of $R$-functions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 68-74
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a5/
%G ru
%F SJIM_2016_19_3_a5
A. V. Proskurin; A. M. Sagalakov. Mathematical modeling of one flow in a~pipe using the method of $R$-functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 68-74. http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a5/

[1] Kravchenko V. F., Rvachev V. L., Algebra logiki, atomarnye funktsii i veivlety v fizicheskikh prilozheniyakh, Fizmatlit, M., 2006

[2] Rvachev V. L., Teoriya $R$-funktsii i nekotorye ee prilozheniya, Nauk. dumka, Kiev, 1982 | MR | Zbl

[3] Shapiro V., “Semi-analytic geometry with $R$-functions”, Acta Numerica, 16 (2007), 239–303 | DOI | MR | Zbl

[4] Tsukanov I., Shapiro V., Zhang S., “A Meshfree method for incompressible fluid dynamics problems”, Internat. J. Numer. Meth. Engrg., 58 (2003), 127–158 | DOI | Zbl

[5] Proskurin A., Sagalakov A., “The numerical investigation of the stability of the localized perturbation in Poiseuille flow”, Comput. Technologies, 18:3 (2013), 46–53

[6] Proskurin A., Sagalakov A., “A $R$-function method for the stability analysis of nonparallel flows”, 5 All-Russian Conf. with Foreign Participants “Free Boundary Problems: Theory, Experiment and Applications”, Biisk, 2014

[7] Proskurin A. V., Sagalakov A. M., “Matematicheskoe modelirovanie techenii v trubakh s pomoschyu metoda funktsii Rvacheva”, 11 Vseros. s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, Sb. trudov, Izd-vo KFU, Kazan, 2015, 3134–3136

[8] Slesarenko A. P., “$S$-funktsii v obratnykh zadachakh analiticheskoi geometrii i modelirovanii teplovykh protsessov”, Vostochno-Evropeiskiizhurn. peredovykh tekhnologii, 3:4(51) (2011), 41–46

[9] Shapiro V., Tsukanov I., “The Architecture of SAGE – A Meshfree System Based on RFM”, Engineering with Computers, 18:4 (2002), 295–311 | DOI