Inverse problems of anomalous diffusion theory: the artificial neural network approach
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the results of the computer modeling of the work of a three-layer perceptron trained to solve inverse problems of anomalous diffusion theory. Several types of inverse problems are considered including the recovery of the Hurst exponent of a self-similar medium.
Mots-clés : anomalous diffusion
Keywords: inverse problem, artificial neural network.
@article{SJIM_2016_19_3_a0,
     author = {A. N. Bondarenko and T. V. Bugueva and V. A. Dedok},
     title = {Inverse problems of anomalous diffusion theory: the artificial neural network approach},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/}
}
TY  - JOUR
AU  - A. N. Bondarenko
AU  - T. V. Bugueva
AU  - V. A. Dedok
TI  - Inverse problems of anomalous diffusion theory: the artificial neural network approach
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 3
EP  - 14
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/
LA  - ru
ID  - SJIM_2016_19_3_a0
ER  - 
%0 Journal Article
%A A. N. Bondarenko
%A T. V. Bugueva
%A V. A. Dedok
%T Inverse problems of anomalous diffusion theory: the artificial neural network approach
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 3-14
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/
%G ru
%F SJIM_2016_19_3_a0
A. N. Bondarenko; T. V. Bugueva; V. A. Dedok. Inverse problems of anomalous diffusion theory: the artificial neural network approach. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/