Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2016_19_3_a0, author = {A. N. Bondarenko and T. V. Bugueva and V. A. Dedok}, title = {Inverse problems of anomalous diffusion theory: the artificial neural network approach}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {3--14}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/} }
TY - JOUR AU - A. N. Bondarenko AU - T. V. Bugueva AU - V. A. Dedok TI - Inverse problems of anomalous diffusion theory: the artificial neural network approach JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2016 SP - 3 EP - 14 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/ LA - ru ID - SJIM_2016_19_3_a0 ER -
%0 Journal Article %A A. N. Bondarenko %A T. V. Bugueva %A V. A. Dedok %T Inverse problems of anomalous diffusion theory: the artificial neural network approach %J Sibirskij žurnal industrialʹnoj matematiki %D 2016 %P 3-14 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/ %G ru %F SJIM_2016_19_3_a0
A. N. Bondarenko; T. V. Bugueva; V. A. Dedok. Inverse problems of anomalous diffusion theory: the artificial neural network approach. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a0/
[1] Nigmatullin R. R., “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teor. i mat. fizika, 90:3 (1992), 354–368 | MR | Zbl
[2] Mainardi F., “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl
[3] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339 (2000), 1–77 | DOI | MR | Zbl
[4] Montroll E. W., Weiss G. H., “Random walks on lattices. II”, J. Math. Phys., 6 (1965), 167–178 | DOI | MR
[5] Barkai E., Metzler R., Klafter M., “From continuous time random walks to the fractional Fokker–Plank equation”, Phys. Rev. E, 61 (2000), 132–138 | DOI | MR
[6] Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P., “Discrete random walk models for space-time fractional diffusion”, Chem. Phys., 284 (2002), 521–541 | DOI
[7] Gorenflo R., Vivoli A., Mainardi F., “Discrete and continuous random walk models for spacetime fractional diffusion”, Nonlinear Dynamics, 38 (2004), 101–116 | DOI | MR | Zbl
[8] Bondarenko A. N., Ivaschenko D. S., “Generalized Sommerfeld problem for time fractional diffusion equation: analytical and numerical approach”, J. Inverse Ill-Posed Probl., 17:4 (2009), 319–333 | DOI | MR
[9] Bondarenko A. N., Ivaschenko D. S., “Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient”, J. Inverse Ill-Posed Probl., 17:5 (2009), 419–440 | DOI | MR | Zbl
[10] Cheng J., Nakagawa J., Yamamoto M., Yamazaki T., “Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation”, Inverse Probl., 25:11 (2009), 115002 | DOI | MR | Zbl
[11] Jin B., Rundell W., “A tutorial on inverse problems for anomalous diffusion processes”, Inverse Probl., 31:3 (2015), 035003 | DOI | MR | Zbl
[12] Rundell W., Xu X., Zuo L., “The determination of an unknown boundary condition in a fractional diffusion equation”, Appl. Anal., 92:7 (2013), 1511–1526 | DOI | MR | Zbl
[13] Tatar S., Ulusoy S., “A uniqueness result for an inverse problem in a space-time fractional diffusion equation”, Electon. J. Differential Equations, 2013 (2013), Paper No 258, 9 pp. | MR | Zbl
[14] Mahmoud M. A., Abu Kiefa M. A., “Neural network solution of the inverse vibration problem”, NDT and E Internat., 32:2 (1999), 91–99 | DOI
[15] Shiguemori E. H., Chiwiacowsky L. D., De Campos Velho H. F., Da Silva J. D. S., “An inverse vibration problem solved by an artificial neural network”, TEMA Tend. Mat. Appl. Comput., 6:1 (2005), 163–175 | MR | Zbl
[16] Barai S. V., Pandey P. C., “Time-delay neural networks in damage detection of railway bridges”, Adv. Engrg. Software, 28 (1997), 1–10 | DOI
[17] Uossermen F., Neirokompyuternaya tekhnika, Mir, M., 1992
[18] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977
[19] Yuste S. B., Acedo L., “An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations”, SIAM J. Numer. Anal., 42 (2005), 1862–1874 | DOI | MR | Zbl