On a~class of systems of ordinary differential equations of large dimension
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 47-60

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a class of systems of ordinary differential equations of large dimension. We prove that, for a sufficiently many equations, the last component of the solution to the Cauchy problem is an approximate solution to an initial value problem for a delay differential equation. Estimates of the approximation are obtained.
Keywords: system of ordinary differential equations of large dimension, limit theorem, delay differential equation.
@article{SJIM_2016_19_2_a4,
     author = {G. V. Demidenko and I. A. Uvarova},
     title = {On a~class of systems of ordinary differential equations of large dimension},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a4/}
}
TY  - JOUR
AU  - G. V. Demidenko
AU  - I. A. Uvarova
TI  - On a~class of systems of ordinary differential equations of large dimension
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 47
EP  - 60
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a4/
LA  - ru
ID  - SJIM_2016_19_2_a4
ER  - 
%0 Journal Article
%A G. V. Demidenko
%A I. A. Uvarova
%T On a~class of systems of ordinary differential equations of large dimension
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 47-60
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a4/
%G ru
%F SJIM_2016_19_2_a4
G. V. Demidenko; I. A. Uvarova. On a~class of systems of ordinary differential equations of large dimension. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 47-60. http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a4/