Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2016_19_1_a3, author = {Yu. Yu. Bagderina}, title = {Group classification of second-order projective-type {ODEs}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {37--51}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a3/} }
Yu. Yu. Bagderina. Group classification of second-order projective-type ODEs. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a3/
[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[2] Ovsyannikov L. V., “Gruppovaya klassifikatsiya uravnenii vida $y''=f(x,y)$”, Prikl. mekhanika i tekhn. fizika, 45:2 (2004), 5–10 | MR | Zbl
[3] Lie S., “Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x,y$, die eine Gruppe von Transformationen gestatten. IV”, Arch. Math., 9 (1884), 431–448
[4] Babich M. V., Bordag L. A., “Projective differential geometrical structure of the Painlevé equations”, J. Differential Equations, 157:2 (1999), 452–485 | DOI | MR | Zbl
[5] Kartak V. V., Second order ODEs cubic in the first-order derivative with 2-dimensional symmetry algebra, 2013, arXiv: 1307.3327[math.CA]
[6] Phauk S., Group classification of second-order ordinary differential equations in the form of a cubic polynomial in the first-order derivative, Master Thesis, Suranaree Univ. Technology, 2012
[7] Bagderina Yu. Yu., “Invariants of a family of scalar second-order ordinary differential equations”, J. Phys. A: Math. Theor., 46:29 (2013), 295201 | DOI | MR | Zbl
[8] Lie S., Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen, BG Teubner, Leipzig, 1891 | Zbl