An underdetermined problem of integral geometry for the generalized Radon transform
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is some new problem of integral geometry. All planes are considered in the three-dimensional Euclidean space. The data are given by the integrals over all such planes of an unknown piecewise-smooth function depending both on the spatial variables and the variables characterizing the planes. The sought object is an integrant discontinuity surface of the first kind. The uniquiness theorem of of the desired surface is proved. The research od the papert presents an aspects of the theory of probing an unknown medium by various physical signals.
Keywords: integral geometry, generalized Radon transform, probing, unknown boundaries.
@article{SJIM_2016_19_1_a1,
     author = {D. S. Anikonov and Ya. A. Kipriyanov},
     title = {An underdetermined problem of integral geometry for the generalized {Radon} transform},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a1/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - Ya. A. Kipriyanov
TI  - An underdetermined problem of integral geometry for the generalized Radon transform
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 18
EP  - 26
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a1/
LA  - ru
ID  - SJIM_2016_19_1_a1
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A Ya. A. Kipriyanov
%T An underdetermined problem of integral geometry for the generalized Radon transform
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 18-26
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a1/
%G ru
%F SJIM_2016_19_1_a1
D. S. Anikonov; Ya. A. Kipriyanov. An underdetermined problem of integral geometry for the generalized Radon transform. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 18-26. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a1/

[1] Khelgason S., Preobrazovanie Radona, Mir, M., 1983 | MR

[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[3] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, Izd-vo inostr. lit., M., 1958

[4] Gelfand I. M., Graev M. A., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962

[5] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Izd-vo In-ta matematiki, Novosibirsk, 1999 | MR

[6] Romanov V. G., Obratnye zadachi dlya differentsialnykh uravnenii, Izd-vo NGU, Novosibirsk, 1973 | MR

[7] Romanov V. G., Nekotorye obratnye zadachi dlya uravnenii giperbolicheskogo tipa, Nauka, Novosibirsk, 1969 | MR

[8] Anikonov D. S., Konovalova D. S., “Problema nedoopredelennosti v zadache integralnoi geometrii”, Dokl. AN, 438:1 (2010), 7–10

[9] Anikonov D. S. , Konovalova D. S., “Nedoopredelennaya zadacha integralnoi geometrii dlya semeistva krivykh”, Sib. mat. zhurn., 56:2 (2015), 265–281 | MR | Zbl

[10] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000, 102–106