On some properties of the domain graphs of dynamical systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 42-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue examining the properties of the domain graphs defining the discrete structure in the phase portraits of the dynamical systems modelling gene networks. Some necessary and sufficient conditions are described for the existence of cycles on different potential levels of the domain graph. Also the conditions are found for these graphs to beisomorphic for different dynamical systems.
Keywords: gene network, graph, dynamical system, potential level
Mots-clés : phase portrait.
@article{SJIM_2015_18_4_a4,
     author = {M. V. Kazantsev},
     title = {On some properties of the domain graphs of dynamical systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {42--48},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a4/}
}
TY  - JOUR
AU  - M. V. Kazantsev
TI  - On some properties of the domain graphs of dynamical systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 42
EP  - 48
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a4/
LA  - ru
ID  - SJIM_2015_18_4_a4
ER  - 
%0 Journal Article
%A M. V. Kazantsev
%T On some properties of the domain graphs of dynamical systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 42-48
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a4/
%G ru
%F SJIM_2015_18_4_a4
M. V. Kazantsev. On some properties of the domain graphs of dynamical systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 42-48. http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a4/

[1] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., “Teoriya gennykh setei”, Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008, 395–480

[2] Golubyatnikov V. P., Golubyatnikov I. V., “On periodic trajectories in odd-dimensional gene network models”, Russian J. Numer. Anal. Math. Modelling, 26:4 (2011), 397–412 | DOI | MR | Zbl

[3] Ayupova N. B., Golubyatnikov V. P., “O edinstvennosti tsikla v nesimmetrichnoi trekhmernoi modeli molekulyarnogo repressilyatora”, Sib. zhurn. industr. matematiki, 17:1 (2014), 3–7 | Zbl

[4] Gedeon T., Dynamics of cyclic feedback systems, Memoirs of AMS, 134, no. 637, 1998, 72 pp. | DOI | MR

[5] Glass L., “Combinatoral aspects of dynamics in biological systems”, Statisticalmechanics and statistical methods in theory and application, N.Y., 1977, 585–611 | DOI | MR

[6] Glass L., Wilds R., “An atlas of robust, stable, high-dimensional limit cycles”, Internat. J. Bifurcation and Chaos, 19:12 (2009), 4055–4096 | DOI | MR | Zbl

[7] Glass L., Siegelmann H. T., “Logical and symbolic analysis of robust biological dynamics”, Current Opinion in Genetics Development, 20 (2010), 644–649 | DOI

[8] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii, Lektsii o modelyakh, Mir, M., 1983

[9] Akinshin A. A., Golubyatnikov V. P., “Tsikly v simmetrichnykh dinamicheskikh sistemakh”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 12:2 (2012), 3–12 | Zbl

[10] Glass L., Pasternack J. S., “Stable oscillations in mathematical models of biological control systems”, J. Math. Biology, 6:3 (1978), 207–223 | DOI | MR | Zbl

[11] Akinshin A. A., “Izuchenie diskretnykh struktur v nekotorykh tsiklicheskikh dinamicheskikh sistemakh”, Polzunovskii vestnik, 2012, no. 4, 214–218

[12] Golubyatnikov V. P., Golubyatnikov I. V., “Geometriya i topologiya fazovykh portretov dinamicheskikh sistem Glassa–Pasternaka malykh razmernostei”, Mat. struktury i modelirovanie, 31:3 (2014), 40–47