Numerical solution of a~problem of refractive tomography in a~tube domain
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 30-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of refractive tomography is considered for a tube domain with a given arbitrary varying absorption and refraction of a special type modelled by means of a Riemannian metric. We propose a numerical solution of the problem based on the consecutive solution of a series of two-dimensional problems. We show that such an approach is possible if the domain has a sufficiently large family of totally geodesic submanifolds of dimension two. Riemannian metrics admitting the existence of the set are contructed. We propose an algorithm for an approximate solution of the problem based on the least squares method.
Keywords: tomography, Riemannian metric, ray transform, totally geodesic submanifold, least squares method.
Mots-clés : absorption, refraction
@article{SJIM_2015_18_4_a3,
     author = {E. Yu. Derevtsov},
     title = {Numerical solution of a~problem of refractive tomography in a~tube domain},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {30--41},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a3/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
TI  - Numerical solution of a~problem of refractive tomography in a~tube domain
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 30
EP  - 41
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a3/
LA  - ru
ID  - SJIM_2015_18_4_a3
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%T Numerical solution of a~problem of refractive tomography in a~tube domain
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 30-41
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a3/
%G ru
%F SJIM_2015_18_4_a3
E. Yu. Derevtsov. Numerical solution of a~problem of refractive tomography in a~tube domain. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 30-41. http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a3/

[1] Derevtsov E. Yu., Kleshchev A. G., Sharafutdinov V. A., “Numerical solution of the emission 2D-tomography problem for a medium with absorption and refraction”, J. Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | DOI | MR | Zbl

[2] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., “Ispolzovanie $B$-splainov v zadache emissionnoi 2D-tomografii v refragiruyuschei srede”, Sib. zhurn. industr. matematiki, 11:3 (2008), 45–60 | MR | Zbl

[3] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., Schuster T., “Numerical $B$-spline solution of emission and vector 2D-tomography problems for media with absorbtion and refraction”, Proc. 2008 IEEE Region 8 Internat. Conf. on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08, Novosibirsk, 2008, 212–217 | DOI

[4] Louis A. K., “Approximate inverse for linear and some nonlinear problems”, Inverse Problems, 12 (1996), 175–190 | DOI | MR | Zbl

[5] Derevtsov E. Yu., Dietz R., Louis A. K., Schuster T., “Influence of refraction to the accuracy of a solution for the 2D-emission tomography problem”, J. Inverse and Ill-Posed Problems, 8:2 (2000), 161–191 | DOI | MR | Zbl

[6] Pikalov V. V., “Vosstanovlenie tomogrammy prozrachnoi neodnorodnosti metodom obraschennoi volny”, Optika i spektroskopiya, 65:4 (1988), 956–962

[7] Louis A. K., “Eikonal Approximation in Ultrasound Computerized Tomography”, Signal Processing, v. II, Control and Applications, Springer-Verl., N.Y., 1990, 285–291 | MR

[8] Kirillov A. A., “Ob odnoi zadache I. M. Gelfanda”, DAN SSSR, 137:2 (1961), 276–277 | MR

[9] Tuy H. K., “An inversion formula for cone-beam reconstruction”, SIAM J. Appl. Math., 43 (1983), 546–552 | DOI | MR

[10] Finch D. V., “Cone-beam reconstruction with sources on a curve”, SIAM J. Appl. Math., 45 (1985), 665–673 | DOI | MR | Zbl

[11] Sharafutdinov V. F., Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR

[12] Smirnov V. I., Kurs vysshei matematiki, v. 4, Gostekhizdat, M., 1957

[13] Zavyalov Yu. S., Kvasov V. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR