Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2015_18_4_a2, author = {G. V. Demidenko and I. I. Matveeva}, title = {On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {18--29}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/} }
TY - JOUR AU - G. V. Demidenko AU - I. I. Matveeva TI - On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2015 SP - 18 EP - 29 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/ LA - ru ID - SJIM_2015_18_4_a2 ER -
%0 Journal Article %A G. V. Demidenko %A I. I. Matveeva %T On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients %J Sibirskij žurnal industrialʹnoj matematiki %D 2015 %P 18-29 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/ %G ru %F SJIM_2015_18_4_a2
G. V. Demidenko; I. I. Matveeva. On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 18-29. http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/
[1] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyudifferentsi alnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971
[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR
[3] Korenevskii D. G., Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov. Algebraicheskie kriterii, Nauk. dumka, Kiev, 1989 | MR
[4] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyufunktsion alnodifferentsialnykh uravnenii, Nauka, M., 1991
[5] Györi I., Ladas G., Oscillation Theory of Delay Differential Equations, With Applications, Oxford Mathematical Monographs, Clarendon Press, Oxford Univ. Press, N.Y., 1991 | MR | Zbl
[6] Khusainov D. Ya., Shatyrko A. V., Metod funktsii Lyapunova v issledovanii ustoichivosti differentsialno-funktsionalnykh sistem, Izd-vo Kiev. un-ta, Kiev, 1997 | MR
[7] Kolmanovskii V. B., Myshkis A. D., Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl
[8] Gu K., Kharitonov V. L., Chen J., Stability of Time-Delay Systems, Control Engineering, Birkhäuser, Boston, 2003 | MR | Zbl
[9] Michiels W., Niculescu S. I., Stability and Stabilization of Time-Delay Systems, An Eigenvalue-Based Approach, Advances in Design and Control, 12, Soc. for Industr. and Appl. Math., Philadelphia, 2007 | MR | Zbl
[10] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer-Verl., N.Y., 2012 | MR | Zbl
[11] Kharitonov V. L., Time-Delay Systems, Lyapunov Functionals and Matrices, Control Engineering, Birkhäuser, Springer-Verl., N.Y., 2013 | MR | Zbl
[12] MacDonald N., Biological Delay Systems: Linear Stability Theory, Cambridge Studies in Mathematical Biology, 8, Univ. Press, Cambridge, 1989 | MR
[13] Kuang Y., Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Acad. Press, Boston, 1993 | MR | Zbl
[14] Erneux T., Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer-Verl., N.Y., 2009 | MR | Zbl
[15] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 20–28 | Zbl
[16] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 48:5 (2007), 1025–1040 | MR | Zbl
[17] Matveeva I. I., Scheglova A. A., “Otsenki reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom s parametrami”, Sib. zhurn. industr. matematiki, 14:1 (2011), 83–92 | MR | Zbl
[18] Matveeva I. I., “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. zhurn. industr. matematiki, 16:3 (2013), 122–132 | MR | Zbl
[19] Demidenko G. V., Matveeva I. I., “Ob otsenkakh reshenii sistem differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 55:5 (2014), 1059–1077 | MR
[20] Demidenko G. V., Matveeva I. I., “Ob ustoichivosti reshenii lineinykh sistem s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 42:2 (2001), 332–348 | MR | Zbl
[21] Varga A., “Computational issues for linear periodic systems: paradigms, algorithms, open problems”, Internat. J. Control, 86:7 (2013), 1227–1239 | DOI | MR | Zbl
[22] Demidenko G. V., “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl
[23] Demidenko G. V., Kotova T. V., Skvortsova M. A., “Ustoichivost reshenii differentsialnykh uravnenii neitralnogo tipa”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:3 (2010), 17–29 | Zbl
[24] Demidenko G. V., Matveeva I. I., “Ob eksponentsialnoi ustoichivosti reshenii odnogo klassa sistem differentsialnykh uravnenii neitralnogo tipa”, Sib. zhurn. industr. matematiki, 17:3 (2014), 59–70 | Zbl
[25] Demidenko G. V., Matveeva I. I., “Estimates for solutions to a class of nonlinear time-delay systems of neutral type”, Electron. J. Diff. Equations, 2015 (2015), Paper No 34, 14 pp. URL: http://ejde.math.txstate.edu/Volumes/2015/34/abstr.html | MR | Zbl