On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of linear systems of delay differential equations with periodic coefficients. We establish conditions on the perturbations of the coefficients under which the exponential stability of the zero solution is preserved and obtain estimates characterizing the exponential decay of solutions to the perturbed systems at infinity.
Keywords: time-delay systems of neutral type, periodic coefficients, robust stability, Lyapunov–Krasovskii functional, Lyapunov differential equation.
@article{SJIM_2015_18_4_a2,
     author = {G. V. Demidenko and I. I. Matveeva},
     title = {On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/}
}
TY  - JOUR
AU  - G. V. Demidenko
AU  - I. I. Matveeva
TI  - On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 18
EP  - 29
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/
LA  - ru
ID  - SJIM_2015_18_4_a2
ER  - 
%0 Journal Article
%A G. V. Demidenko
%A I. I. Matveeva
%T On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 18-29
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/
%G ru
%F SJIM_2015_18_4_a2
G. V. Demidenko; I. I. Matveeva. On the robust stability of solutions to linear differential equations of neutral type with periodic coefficients. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 18-29. http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a2/

[1] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyudifferentsi alnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[3] Korenevskii D. G., Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov. Algebraicheskie kriterii, Nauk. dumka, Kiev, 1989 | MR

[4] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyufunktsion alnodifferentsialnykh uravnenii, Nauka, M., 1991

[5] Györi I., Ladas G., Oscillation Theory of Delay Differential Equations, With Applications, Oxford Mathematical Monographs, Clarendon Press, Oxford Univ. Press, N.Y., 1991 | MR | Zbl

[6] Khusainov D. Ya., Shatyrko A. V., Metod funktsii Lyapunova v issledovanii ustoichivosti differentsialno-funktsionalnykh sistem, Izd-vo Kiev. un-ta, Kiev, 1997 | MR

[7] Kolmanovskii V. B., Myshkis A. D., Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[8] Gu K., Kharitonov V. L., Chen J., Stability of Time-Delay Systems, Control Engineering, Birkhäuser, Boston, 2003 | MR | Zbl

[9] Michiels W., Niculescu S. I., Stability and Stabilization of Time-Delay Systems, An Eigenvalue-Based Approach, Advances in Design and Control, 12, Soc. for Industr. and Appl. Math., Philadelphia, 2007 | MR | Zbl

[10] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer-Verl., N.Y., 2012 | MR | Zbl

[11] Kharitonov V. L., Time-Delay Systems, Lyapunov Functionals and Matrices, Control Engineering, Birkhäuser, Springer-Verl., N.Y., 2013 | MR | Zbl

[12] MacDonald N., Biological Delay Systems: Linear Stability Theory, Cambridge Studies in Mathematical Biology, 8, Univ. Press, Cambridge, 1989 | MR

[13] Kuang Y., Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Acad. Press, Boston, 1993 | MR | Zbl

[14] Erneux T., Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer-Verl., N.Y., 2009 | MR | Zbl

[15] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 20–28 | Zbl

[16] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 48:5 (2007), 1025–1040 | MR | Zbl

[17] Matveeva I. I., Scheglova A. A., “Otsenki reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom s parametrami”, Sib. zhurn. industr. matematiki, 14:1 (2011), 83–92 | MR | Zbl

[18] Matveeva I. I., “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. zhurn. industr. matematiki, 16:3 (2013), 122–132 | MR | Zbl

[19] Demidenko G. V., Matveeva I. I., “Ob otsenkakh reshenii sistem differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 55:5 (2014), 1059–1077 | MR

[20] Demidenko G. V., Matveeva I. I., “Ob ustoichivosti reshenii lineinykh sistem s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 42:2 (2001), 332–348 | MR | Zbl

[21] Varga A., “Computational issues for linear periodic systems: paradigms, algorithms, open problems”, Internat. J. Control, 86:7 (2013), 1227–1239 | DOI | MR | Zbl

[22] Demidenko G. V., “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl

[23] Demidenko G. V., Kotova T. V., Skvortsova M. A., “Ustoichivost reshenii differentsialnykh uravnenii neitralnogo tipa”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:3 (2010), 17–29 | Zbl

[24] Demidenko G. V., Matveeva I. I., “Ob eksponentsialnoi ustoichivosti reshenii odnogo klassa sistem differentsialnykh uravnenii neitralnogo tipa”, Sib. zhurn. industr. matematiki, 17:3 (2014), 59–70 | Zbl

[25] Demidenko G. V., Matveeva I. I., “Estimates for solutions to a class of nonlinear time-delay systems of neutral type”, Electron. J. Diff. Equations, 2015 (2015), Paper No 34, 14 pp. URL: http://ejde.math.txstate.edu/Volumes/2015/34/abstr.html | MR | Zbl