Steady motion of a~ball in a~Stokes--Poiseuille flow
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 76-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of steady solutions to the problem of the motion of a rigid ball in a cylindrical pipe filled with a viscous incompressible fluid is proved. The cross section of the pipe has an arbitrary form and the fluid flow is governed by the Stokes equations. At the infinity, the velocity profile tends to that of the Poiseuille flow. It is established that a steady solution exists for any position of the ball in the pipe. The ball performs a straight motion along the generatrices of the pipe and its linear and angular velocities depend on the position of the ball's center in the cross section of the cylinder.
Mots-clés : viscous incompressible fluid
Keywords: rigid body, cylindrical pipe, steady motion.
@article{SJIM_2015_18_3_a7,
     author = {V. N. Starovoitov},
     title = {Steady motion of a~ball in {a~Stokes--Poiseuille} flow},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {76--85},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a7/}
}
TY  - JOUR
AU  - V. N. Starovoitov
TI  - Steady motion of a~ball in a~Stokes--Poiseuille flow
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 76
EP  - 85
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a7/
LA  - ru
ID  - SJIM_2015_18_3_a7
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%T Steady motion of a~ball in a~Stokes--Poiseuille flow
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 76-85
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a7/
%G ru
%F SJIM_2015_18_3_a7
V. N. Starovoitov. Steady motion of a~ball in a~Stokes--Poiseuille flow. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 76-85. http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a7/

[1] Segré G., Silberberg A., “Behaviour of macroscopic rigid spheres in Poiseuille flow. P. 2. Experimental results and interpretation”, J. Fluid Mech., 14:1 (1962), 136–157 | DOI | Zbl

[2] Saffman P. G., “The lift on a small sphere in a slow shear flow”, J. Fluid Mech., 22:2 (1965), 385–400 | DOI | Zbl

[3] Serre D., “Chute libre d'un solide dans un fluide visqueux incompressible. Existence”, Japan J. Appl. Math., 4:1 (1987), 99–110 | DOI | MR | Zbl

[4] Galdi G. P., Vaidya A., “Translational steady fall of symmetric bodies in a Navier–Stokes liquid with application to particle sedimentation”, J. Math. Fluid Mech., 3:1 (2001), 183–211 | DOI | MR | Zbl

[5] Galdi G. P., “On the motion of a rigid body in a viscous fluid: a mathematical analysis with applications”, Handbook of Mathematical Fluid Dynamics, v. 1, Elsevier Sci., Chicago–Lyon, 2002, 653–791 | DOI | MR | Zbl

[6] Hillairet M., Serre D., “Free steady fall of a solid in a fluid along a ramp”, Ann. Institut H. Poincaré. Anal. Non Linear., 20:5 (2003), 779–803 | DOI | MR | Zbl

[7] Silvestre A. L., “On the existence of steady flows of a Navier–Stokes liquid around a moving rigid body”, Math. Meth. Appl. Sci., 27:12 (2004), 1399–1409 | DOI | MR | Zbl

[8] Nečasová Š., “Asymptotic properties of the steady fall of a body in viscous fluids”, Math. Meth. Appl. Sci., 27:17 (2004), 1969–1995 | DOI | MR

[9] Nečasová Š., “Steady fall of a rigid body in viscous fluid”, Nonlinear Analysis: Theory, Methods and Applications, 63:5–7 (2005), e2113–e2119

[10] Hillairet M., Wittwer P., “Existence of stationary solutions of the Navier–Stokes equations in two dimensions in the presence of a wall”, J. Evolution Equations, 9 (2009), 675–706 | DOI | MR | Zbl

[11] Takahashi T., Tucsnak M., “Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid”, J. Math. Fluid Mech., 6:1 (2004), 53–77 | DOI | MR | Zbl

[12] Hoffmann K.-H., Starovoitov V. N., “On a motion of a solid body in a viscous fluid. Twodimensional case”, Adv. Math. Sci. Appl., 9:2 (1999), 633–648 | MR | Zbl

[13] Hoffmann K.-H., Starovoitov V. N., “Zur Bewegung einer Kugel in einer zähen Flüssigkeit”, Documenta Mathematica, 5 (2000), 15–21 | MR | Zbl

[14] Starovoitov V. N., Neregulyarnye zadachi gidrodinamiki, Dis. $\dots$ dokt. fiz.-mat. nauk, Novosibirsk, 2000

[15] Starovoitov V. N., “Behavior of a rigid body in an incompressible viscous fluid near a boundary”, Free boundary problems, International Series of Numerical Mathematics, 147, Birkhäuser, Basel, 2003, 313–327 | MR | Zbl

[16] Alekseev G. V., “Optimizatsiya v zadachakh maskirovki materialnykh tel metodom volnovogo obtekaniya”, Dokl. AN, 449:6 (2013), 652–656 | DOI | MR

[17] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, 93, 2012 | MR

[18] Plotnikov P. I., Starovoitov V. N., Starovoitova B. N., “Svoistva resheniya odnoi variatsionnoi zadachi o dvizhenii tverdogo tela v stoksovoi zhidkosti”, Dokl. AN, 446:2 (2012), 131–137 | MR | Zbl

[19] Starovoitov V. N., “Optimalnoe upravlenie vrascheniem tsilindra v vyazkoi zhidkosti”, Sib. zhurn. industr. matematiki, 16:1(53) (2013), 95–105 | MR

[20] Galdi G. P., An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, Springer Monographs in Mathematics, 2011 | DOI | MR

[21] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[22] Ladyzhenskaya O. A., Solonnikov V. A., “O nakhozhdenii reshenii kraevykh zadach dlya statsionarnykh uravnenii Stoksa i Nave–Stoksa, imeyuschikh neogranichennyi integral Dirikhle”, Zapiski nauch. seminarov LOMI, 96, 1980, 117–160 | MR | Zbl

[23] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR