Reconstruction of a~singular support of a~tensor field given in refractive medium by its ray transform
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose approaches to a numerical solution for the reconstruction problem of a singular support of a tensor field by its known ray transform. For the posed problem solving we use back-projection operators acting on the ray transforms and tensor analysis methods for Riemannian manifold. Indicator operators of the medium inhomogeneity are constructed and allow allocate the sets of points belonging to the singular support of scalar, vector and tensor fields. The algorithms for solving of the posed problem are proposed and realized.
Keywords: tomography, tensor field, function break, singular support, ray transform, back-projection operator, tensor analysis.
Mots-clés : refraction
@article{SJIM_2015_18_3_a1,
     author = {E. Yu. Derevtsov and S. V. Maltseva},
     title = {Reconstruction of a~singular support of a~tensor field given in refractive medium by its ray transform},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a1/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - S. V. Maltseva
TI  - Reconstruction of a~singular support of a~tensor field given in refractive medium by its ray transform
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 11
EP  - 25
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a1/
LA  - ru
ID  - SJIM_2015_18_3_a1
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A S. V. Maltseva
%T Reconstruction of a~singular support of a~tensor field given in refractive medium by its ray transform
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 11-25
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a1/
%G ru
%F SJIM_2015_18_3_a1
E. Yu. Derevtsov; S. V. Maltseva. Reconstruction of a~singular support of a~tensor field given in refractive medium by its ray transform. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 11-25. http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a1/

[1] Vainberg E. I., Kazak I. A., Faingoiz M. L., “X-ray computerized back projection tomography with filtration by double differentiation. Procedure and information features”, Soviet J. Nondest. Test., 21 (1985), 106–113

[2] Faridani A., Ritman E. L., Smith K. T., “Local tomography”, SIAM J. Appl. Math., 52:2 (1992), 459–484 | DOI | MR | Zbl

[3] Faridani A., Finch D. V., Ritman E. L., Smith K. T., “Local tomography. II”, SIAM J. Appl. Math., 57:4 (1997), 1095–1127 | DOI | MR | Zbl

[4] Louis A. K., Maass P., “Contour Reconstruction in 3-D X-Ray CT”, IEEE Trans. Med. Imag., 12:4 (1993), 764–769 | DOI | MR

[5] Anikonov D. S., “Ispolzovanie osobennostei resheniya uravneniya perenosa v rentgenovskoi tomografii”, Doklady RAN, 335:6 (1994), 702–704 | MR | Zbl

[6] Anikonov D. S., “Spetsialnaya zadacha integralnoi geometrii”, Doklady RAN, 415:1 (2007), 7–9 | MR | Zbl

[7] Derevtsov E. Yu., “Nekotorye podkhody k zadache vizualizatsii singulyarnogo nositelya skalyarnykh, vektornykh i tenzornykh polei po tomograficheskim dannym”, Sib. elektron. mat. izvestiya, 5 (2008), 632–646 | MR | Zbl

[8] Derevtsov E. Yu., Pikalov V. V., “Vosstanovlenie vektornogo polya i ego singulyarnostei po luchevym preobrazovaniyam”, Sib. zhurn. vychisl. matematiki, 14:1 (2011), 29–46

[9] Sharafutdinov V., Skokan M., Uhlmann G., “Regularity of ghosts in tensor tomography”, J. Geom. Anal., 15:3 (2005), 499–542 | DOI | MR

[10] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR

[11] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya, ONTI, L.–M., 1934

[12] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR | Zbl

[13] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[14] Monard F., “On reconstruction formulas for the ray transform acting on symmetric differentials on surfaces”, Inverse Problems, 30:6 (2014), 065001, 21 pp. ; arXiv: 1311.6167v2[math.AP] | DOI | MR | Zbl

[15] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR

[16] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975