An equilibrium problem for an elastic plate with an inclined crack on the boundary of a~rigid inclusion
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equilibrium problem for a Kirchhoff–Love elastic plate with an inclined crack on the boundary of a rigid inclusion. The nonpenetration conditions are considered at the crack faces in the form of equalities and inequalities. On the boundary of the rigid inclusion, some identity holds describing the action of the external forces on the rigid part of the plate. The variational statement of the problem is studied, and an equivalent boundary value problem is formulated. For a family of problems about a plate with inclined crack on the boundary, we analyze the passage to the limit as the rigidity parameter of the inclusion tends to infinity.
Keywords: inclined crack, rigid inclusion, plate, variational inequality.
@article{SJIM_2015_18_2_a7,
     author = {N. V. Neustroeva},
     title = {An equilibrium problem for an elastic plate with an inclined crack on the boundary of a~rigid inclusion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a7/}
}
TY  - JOUR
AU  - N. V. Neustroeva
TI  - An equilibrium problem for an elastic plate with an inclined crack on the boundary of a~rigid inclusion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 74
EP  - 84
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a7/
LA  - ru
ID  - SJIM_2015_18_2_a7
ER  - 
%0 Journal Article
%A N. V. Neustroeva
%T An equilibrium problem for an elastic plate with an inclined crack on the boundary of a~rigid inclusion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 74-84
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a7/
%G ru
%F SJIM_2015_18_2_a7
N. V. Neustroeva. An equilibrium problem for an elastic plate with an inclined crack on the boundary of a~rigid inclusion. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 74-84. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a7/

[1] Khludnev A. M., “Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine”, Izv. RAN. Mekhanika tverdogo tela, 2010, no. 5, 98–110

[2] Loigering G., Khludnev A. M., “O ravnovesii uprugikh tel, soderzhaschikh zhestkie vklyucheniya”, Dokl. AN, 430:1 (2010), 47–50 | MR

[3] Kovtunenko V. A., Leontev A. N., Khludnev A. M., “Zadacha o ravnovesii plastiny s naklonnym razrezom”, Prikl. mekhanika i tekhn. fizika, 39:2 (1998), 164–174 | MR | Zbl

[4] Khludnev A. M., “Zadacha o ravnovesii plastiny, soderzhaschei naklonnuyu treschinu”, Prikl. mekhanika i tekhn. fizika, 38:5 (1997), 117–121 | MR | Zbl

[5] Lazarev N. P., “Zadacha o ravnovesii plastiny Timoshenko s naklonnoi treschinoi”, Prikl. mekhanika i tekhn. fizika, 54:4 (2013), 171–181 | MR | Zbl

[6] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[7] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[8] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | MR | Zbl

[9] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[10] Rudoi E. M., “Formula Griffitsa i integral Cherepanova–Raisa dlya plastiny s zhestkim vklyucheniem i treschinoi”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:2 (2010), 98–117

[11] Rotanova T. A., “O postanovkakh i razreshimosti zadachi o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR

[12] Lazarev N. P., “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Siberian Federal Univ. Mathematics. Physics, 6:1 (2013), 53–62

[13] Negri M., Khludnev A. M., “O ravnovesii uprugikh tel s tonkimi uprugimi vklyucheniyami”, Dokl. AN, 443:3 (2012), 313–316 | MR

[14] Lazarev N. P., “Zadacha o ravnovesii plastiny Timoshenko, soderzhaschei treschinu vdol tonkogo zhestkogo vklyucheniya”, Vestn. Udmurt. gos. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2014, no. 1, 32–45 | Zbl

[15] Popova T. S., “Zadacha o ravnovesii vyazkouprugogo tela s tonkim zhestkim vklyucheniem”, Mat. zametki SVFU, 21:1 (2014), 47–55

[16] Morassi A., Rosset E., “Detecting rigid inclusions, or cavities, in an elastic body”, J. Elasticity, 73 (2003), 101–126 | DOI | MR | Zbl

[17] Volmir A. C., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972 | MR