The method of differential relations and nonlinear inverse problems
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 36-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the method of differential relations to the study of some inverse problems for nonlinear one-dimensional differential equations of a general type including the classical equations of soliton theory. We also consider the problem of finding a potential for an equation of continuum mechanics in the one-dimensional case in presence of some differential relation.
Keywords: inverse problems, nonlinear equations, presentations of solutions.
Mots-clés : soliton
@article{SJIM_2015_18_2_a3,
     author = {Yu. E. Anikonov and M. V. Neshchadim},
     title = {The method of differential relations and nonlinear inverse problems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {36--47},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a3/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - M. V. Neshchadim
TI  - The method of differential relations and nonlinear inverse problems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 36
EP  - 47
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a3/
LA  - ru
ID  - SJIM_2015_18_2_a3
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A M. V. Neshchadim
%T The method of differential relations and nonlinear inverse problems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 36-47
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a3/
%G ru
%F SJIM_2015_18_2_a3
Yu. E. Anikonov; M. V. Neshchadim. The method of differential relations and nonlinear inverse problems. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 36-47. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a3/

[1] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[2] Anikonov Yu. E., Ayupova N. B., Bardakov V. G., Golubyatnikov V. P., Neschadim M. V., “Obratimost otobrazhenii i obratnye zadachi”, Sib. elektron. mat. izvestiya, 9 (2012), 382–432 URL: http://semr.math.nsc.ru | MR

[3] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. I”, Sib. zhurn. industr. matematiki, 14:1 (2011), 27–39 | MR | Zbl

[4] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. II”, Sib. zhurn. industr. matematiki, 14:2 (2011), 28–33 | MR | Zbl

[5] Anikonov Yu. E., Neschadim M. V., “Predstavleniya dlya reshenii i koeffitsientov differentsialnykh uravnenii 2-go poryadka”, Sib. zhurn. industr. matematiki, 15:4 (2012), 17–23 | MR

[6] Anikonov Yu. E., Neschadim M. V., “Predstavleniya reshenii i koeffitsientov evolyutsionnykh uravnenii”, Sib. zhurn. industr. matematiki, 16:2 (2013), 40–49 | MR

[7] Blend D., Nelineinaya dinamicheskaya teoriya uprugosti, Mir, M., 1972 | MR

[8] Vdovina E. K., “Uravnenie Garri Dima privoditsya k lineinomu ODU”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:4 (2011), 626–627

[9] Golovin S. V., “Tochnye resheniya dlya evolyutsionnykh podmodelei gazovoi dinamiki”, Prikl. mekhanika i teor. fizika, 43:4 (2002), 3–14 | MR | Zbl

[10] Gorieli A., Integriruemost i singulyarnost, M.–Izhevsk, 2006

[11] Infeld E., Roulands Dzh., Nelineinye volny, solitony i khaos, Fizmatlit, M., 2006

[12] Kalodzhero F., Degasperis A., Spektralnye preobrazovaniya i solitony, Mir, M., 1985 | MR

[13] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsialnykh svyazei i ego prilozhenie v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR

[14] Yanenko N. N., “O invariantnykh differentsialnykh svyazyakh dlya giperbolicheskikh sistem kvazilineinykh uravnenii”, Izv. vuzov. Ser. mat., 1961, no. 3, 185–194 | MR | Zbl

[15] Yanenko N. N., Izbrannye trudy. Matematika. Mekhanika, Nauka, M., 1991 | MR