Ray approximations for the shock waves of an elastic deformation of axisymmetric type in a~cylindrical layer
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 111-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The efficiency of the version of the ray method developed directly for strong discontinuity waves (shock waves) is demonstrated by the example of an axisymmetric problem of intense deformation of a cylindrical nonlinear elastic layer under load action on its exterior border. We consider several initial stages of the wave process, namely, the motion of the created shock waves to the interior border of the layer, the reflection of a more rapid wave from the interior border, the interaction of a slow shock wave and the reflected shock wave with the formation of a new wave pattern. The solution for each deformation stage is constructed using the modified ray series method.
Keywords: nonlinear elastic medium, impact deformation, ray series, axisymmetric problem, quasi-longitudinal and quasi-transverse shock waves.
@article{SJIM_2015_18_2_a10,
     author = {V. E. Ragozina and Yu. E. Ivanova},
     title = {Ray approximations for the shock waves of an elastic deformation of axisymmetric type in a~cylindrical layer},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--123},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a10/}
}
TY  - JOUR
AU  - V. E. Ragozina
AU  - Yu. E. Ivanova
TI  - Ray approximations for the shock waves of an elastic deformation of axisymmetric type in a~cylindrical layer
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 111
EP  - 123
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a10/
LA  - ru
ID  - SJIM_2015_18_2_a10
ER  - 
%0 Journal Article
%A V. E. Ragozina
%A Yu. E. Ivanova
%T Ray approximations for the shock waves of an elastic deformation of axisymmetric type in a~cylindrical layer
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 111-123
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a10/
%G ru
%F SJIM_2015_18_2_a10
V. E. Ragozina; Yu. E. Ivanova. Ray approximations for the shock waves of an elastic deformation of axisymmetric type in a~cylindrical layer. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 111-123. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a10/

[1] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Mosk. litsei, M., 1998

[2] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy i ikh struktury v nelineino-uprugikh sredakh s dispersiei i dissipatsiei”, Sovr. probl. matem., 7, izd. MIAN, M., 2007, 3–148 | DOI | Zbl

[3] Blend D. R., Nelineinaya dinamicheskaya teoriya uprugosti, Mir, M., 1972 | MR

[4] Burenin A. A., Rossikhin Yu. A., “O vliyanii vyazkosti na kharakter rasprostraneniya ploskoi prodolnoi volny”, Prikl. mekhanika i tekhn. fizika, 1990, no. 6, 13–17 | MR

[5] Burenin A. A., Ragozina V. E., Ivanova Yu. E., “Evolyutsionnoe uravnenie dlya volnovykh protsessov formoizmeneniya”, Izv. SGU. Ser. Matematika. Mekhanika. Informatika, 9:4, ch. 2 (2009), 14–24

[6] Burenin A. A., Rossikhin Yu. A., “Luchevoi metod resheniya odnomernykh zadach nelineinoi dinamicheskoi teorii uprugosti s ploskimi poverkhnostyami silnykh razryvov”, Prikl. zadachi mekhaniki deformiruemykh sred, Izd-vo DVO AN SSSR, Vladivostok, 1991, 129–137

[7] Gerasimenko E. A., Zavertan A. V., Ragozina V. E., “Ob ispolzovanii prifrontovykh luchevykh razlozhenii v dinamike deformirovaniya”, Prikl. matematika i mekhanika, 73:2 (2009), 282–288 | MR | Zbl

[8] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[9] Vedenyapin E. N., Kukudzhanov V. N., “Metod chislennogo integrirovaniya nestatsionarnykh zadach dinamiki uprugoi sredy”, Zhurn. vychisl. matematiki i mat. fiziki, 21:5 (1981), 1233–1248 | MR | Zbl

[10] Naife A. Kh., Metody vozmuschenii, Mir, M., 1976 | MR

[11] Tomas T., Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, M., 1964

[12] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998

[13] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, 2, Nauka, M., 1973

[14] Bykovtsev G. I., Vlasova I. A., “Luchevoi metod prostranstvennykh zadach teorii idealnoi plastichnosti”, Mekhanika deformiruemogo tverdogo tela, izd. In-ta gidrodinamiki SO AN SSSR, Novosibirsk, 1979, 31–36

[15] Burenin A. A., Ragozina V. E., “K postroeniyu priblizhennykh reshenii kraevykh zadach udarnogo deformirovaniya”, Izv. RAN. Mekhanika tverdogo tela, 2008, no. 2, 106–113